LI Jiale,DENG Lili,XU Shiqiong,et al.Cloning and Expression Analysis of FaABI5 Gene in Strawberry[J].Northern Horticulture,2022,(01):31-39.[doi:10.11937/bfyy.20212123]
草莓FaABI5基因的克隆与表达分析
- Title:
- Cloning and Expression Analysis of FaABI5 Gene in Strawberry
- Keywords:
- strawberry; FaABI5 gene; clone; expression pattern
- 文献标志码:
- A
- 摘要:
- 以‘红颜’草莓为试材,采用同源克隆方法得到FaABI5基因,利用荧光定量PCR法获取该基因的表达模式,通过转录活性验证和亚细胞定位分析其蛋白的特性,利用大肠杆菌诱导表达该蛋白,以期为进一步解析FaABI5的基因功能提供参考依据。结果表明:草莓FaABI5基因的开放阅读框为1 329 bp,共编码442个氨基酸,预测分子量约为47.1 kDa,理论等电点为9.70,属于不稳定亲水蛋白。氨基酸序列比对显示该基因与其它物种的ABI5蛋白具有较高一致性,系统发育树表明草莓FaABI5与森林草莓、月季中的同源蛋白聚为一支,亲缘关系较近。获得该基因起始密码子上游1 500 bp长的启动子序列,分析显示除了有大量ABA响应元件ABRE外,还存在许多光、植物激素及非生物胁迫响应元件。qRT-PCR结果表明,FaABI5在草莓的根和茎中表达量最高,在果实中表达量较低。在酵母中,FaABI5不具有转录激活能力。亚细胞定位试验证明FaABI5为核定位蛋白。在大肠杆菌Rosetta(DE3)中,28 ℃自诱导24 h可以获得具有生物活性的FaABI5重组蛋白。
- Abstract:
- The FaABI5 gene was cloned from the cultivated strawberry ‘Benihoppe’ by homologous cloning,the expression pattern of FaABI5 was obtained by qRT-PCR,the protein was characterized by transcriptional activity and subcellular localization,and the protein was induced to expressed using Escherichia coli,in order to provide a reference for further elucidation of the gene function of FaABI5.The results showed that the open reading frame of strawberry FaABI5 gene was 1 329 bp,encoding 442 amino acids,with a predicted molecular weight of about 47.1 kDa and a theoretical isoelectric point of 9.70,which was an unstable hydrophilic protein.Amino acid sequence comparison showed that this proteins had high identity with ABI5 proteins of other species,and the phylogenetic tree indicated that strawberry FaABI5 clustered with homologous proteins in wild strawberry and Chinese rose into one branch.A 1 500 bp long promoter sequence upstream of the start codon of this gene was obtained.In addition to a large number of ABA response elements ABRE,the promoter of FaABI5 contains many light,phytohormone and abiotic stress response elements.qRT-PCR results showed that FaABI5 was most highly expressed in roots and stems of strawberry,and less expressed in fruits.In yeast,FaABI5 does not have transcriptional activation ability.Subcellular localization experiments demonstrated that FaABI5 was a nuclear localization protein.Bioactive FaABI5 recombinant protein could be obtained by self-induction at 28 ℃ for 24 hours in E.coli Rosetta (DE3).
参考文献/References:
[1]FINKELSTEIN R R.Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations[J].Plant Journal,2010,5(6):765-771.[2]LYNCH F,FINKELSTEIN R R.The Arabidopsis abscisic acid response gene ABI5encodes a basic leucine zipper transcription factor[J].The Plant Cell,2000,12(4):599-609.[3]KEUM P L,URSZULA P,VERONIKA T,et al.Spatially and genetically distinct control of seed germination by phytochromes A and B[J].Genes &Development,2012,26(17):1984-1996.[4]WANG Y,LIN L,YE T,et al.The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis[J].Journal of Experimental Botany,2013(2):675-684.[5]ANNA S,AGATA D G,IWONA S.The role and regulation of ABI5(ABA-Insensitive 5)in plant development,abioticstress responses and phytohormone crosstalk[J].Frontiers in Plant Science,2016(7):1884.[6]KENJI T,TERUAKI T,TAKAHISA H,et al.A novel abi5 allele reveals the importance of the conserved Ala in the C3 domain for regulation of downstream genes and salt tolerance during germination in Arabidopsis[J].Plant Signaling & Behavior,2013,8(3):234-255.[7]BI C,MA Y,WANG X F,et al.Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis[J].Plant Molecular Biology,2017,95(4-5):425-439.[8]YASUHITO S,DAMI K,SU H H,et al.Multilayered regulation of membrane-bound ONAC054 is essential for abscisic acid-induced leaf senescence in rice[J].The Plant Cell,2020,32(3):630-649.[9]JU L,JING Y X,SHI P T,et al.JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis[J].New Phytologist,2019,223(1):246-260.[10]MASAHARU S,WU S,LI Q B,et al.Distinct functions of COAR and B3 domains of maize VP1 in induction of ectopic gene expression and plant developmental phenotypes in Arabidopsis[J].Plant Molecular Biology,2014,85(1-2):179-191.[11]LIU J,CHEN X,WANG S,et al.MeABL5,an ABA Insensitive 5-Like basic leucine zipper transcription factor,positivelyregulates MeCWINV3 in cassava (Manihot esculenta Crantz)[J].Frontiers in Plant Science,2019(10):772.[12]AN J P,ZHANG X W,LIU Y J,et al.ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple[J].Journal of Experimental Botany,2021,72(4):1460-1472.[13]ZHOU X N,YUAN F F,WANG M Y,et al.Molecular characterization of an ABA insensitive 5 orthologue in Brassica oleracea[J].Biochemical & Biophysical Research Communications,2013,430(3):1140-1146.[14]BAI L L,ZHU W B,SUN C C,et al.Genome-Wide analysis of the bZIP gene family identifies two ABI5-Like bZIPtranscription factors,BrABI5a and BrABI5b,as positive modulators of ABA signalling in Chinese cabbage[J].PLoS One,2016,11(7):1589-1596.[15]FUMINORI K,ERI M,AKIHIRO T,et al.Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings[J].Physiologia Plantarum,2010,134(1):74-86.[16]LIAO C J,LAI Z B,LEE S H,et al.Arabidopsis HOOKLESS1 regulates responses to pathogens and abscisic acid through interaction with MED18 and acetylation of WRKY33 and ABI5 chromatin[J].The Plant Cell,2016,28(7):1662-1681.[17]张运涛,雷家军,赵密珍,等.新中国果树科学研究70年:草莓[J].果树学报,2019,36(10):1441-1452.[18]BAI Q,HUANG Y,SHEN Y Y.The physiological and molecular mechanism of abscisic acid in regulation of fleshy fruit ripening[J].Frontiers in Plant Science,2021(11):619953.[19]JIA H F,CHAI Y M,LI C L,et al.Abscisicacid plays an important role in the regulation of strawberry fruit ripening[J].Plant Physiology,2011,157(1):188-199.[20]CHAI Y M,ZHANG Q,TIAN L,et al.FaPYR1 is involved in strawberry fruit ripening[J].Plant Growth Regulation,2013,69(1):63-69.[21]HOU B Z,XU C,SHEN Y Y.A leu-rich repeat receptor-like protein kinase,FaRIPK1,interacts with ABA receptor,FaABAR,to regulate fruit ripening in strawberry[J].Journal of Experimental Botany,2018,69(7):1569-1582.[22]JIA H F,DONG L,SUN J H,et al.Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening[J].Journal of Experimental Botany,2013(6):1677-1687.[23]HANY,DANG R H,LI J X,et al.Sucrose nonfermenting1-related protein KINASE2.6,an ortholog of open stomata1,is a negative regulator of strawberry fruit development and ripening[J].Plant Physiology,2015,167(3):915-930.[24]JIA M,NING D,ZHANG Q,et al.A Feronia-Like receptor kinase regulates strawberry (Fragaria×ananassa)fruit ripening and quality formation[J].Frontiers in Plant Science,2017(8):1099.[25]XIONG L,LI M,LIU B,et al.Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry[J].Proceedings of the National Academy of Sciences,2018,115(49):11542-11550.[26]KADOMURA-ISHIKAWA Y,MIYAWAKI K,TAKAHASHI A,et al.Light and abscisic acid independently regulated FaMYB10 in Fragaria×ananassa fruit[J].Planta,2015,241(4):953-965.[27]MARGHERITA D,FLAVIA G,GIORGIO C.A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries,and auxin and abscisic acid antagonistically affect its expression[J].Journal of Experimental Botany,2013(12):3775-3786.[28]LI D,MOU W,LUO Z,et al.Developmental and stress regulation on expression of a novel miRNA,Fan-miR73,and its target ABI5 in strawberry[J].Scientific Reports,2016(6):28385.[29]JIA H F,JIU S T,ZHANG C,et al.Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor[J].Plant Biotechnology Journal,2016,14(10):2045-2065.[30]CHEN Q,YU H W,WANG X R,et al.An alternative cetyltrimethylammonium bromide-based protocol for RNA isolation from blackberry (Rubus L.)[J].Genetics & Molecular Research,2012,11(2):1773-1782.[31]STUDIER F W.Protein production by auto-induction in high density shaking cultures[J].Protein Expression Purification,2005,41(1):207-234.[32]VALLARINO J G,OSORIO S,BOMBARELY A,et al.Central role of FaGAMYB in the transition of the strawberry receptacle from development to ripening[J].New Phytologist,2015,208(2):482-496.[33]CARRASCO-ORELLANA C,STAPPUNG Y,MENDEZ-YAEZ A,et al.Characterization of a ripening-related transcription factor FcNAC1 from Fragaria chiloensis fruit[J].Scientific Reports,2018,8(1):10524.[34]MARTN-PIZARRO C,VALLARINO J G,OSORIO S,et al.The NAC transcription factor FaRIF controls fruit ripening in strawberry[J].The Plant Cell,2021,33(5):3-20.[35]SEYMOUR G B,RYDER C D,CEVIK V,et al.A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria×ananassa Duch.)fruit,a non-climacteric tissue[J].Journal of Experimental Botany,2011,62(3):1179-1188.[36]TISZA V,KOVCS L,BALOGH A,et al.Characterization of FaSPT,a SPATULA gene encoding a bHLH transcriptional factor from the non-climacteric strawberry fruit[J].Plant Physiology & Biochemistry,2010,48(10-11):822-826.[37]MEDINA-PUCHE L,MARTINEZ-RIVAS F J,MOLINA-HIDALGO F J,et al.An atypical HLH transcriptional regulator plays a novel and important role in strawberry ripened receptacle[J].BMC Plant Biology,2019,19(1):367-381.[38]AHARONI A,WEIN M,SUN Z K,et al.The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J].The Plant Journal,2001,28(3):319-332.[39]WEI L Z,MAO W M,JIA M R,et al.FaMYB44.2,a transcriptional repressor,negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10[J].Journal of Experimental Botany,2018,69(20):4805-4820.[40]CHEN H,ZHANG J Y,NEFF M M,et al.Integration of light and abscisic acid signaling during seed germination and early seedling development[J].Proceedings of the National Academy of Sciences,2008,105(11):4495-4500.[41]HU B,LAI B,WANG D,et al.Three LcABFs are involved in the regulation of chlorophyll degradation and anthocyanin biosynthesis during fruit ripening in Litchi chinensis[J].Plant and Cell Physiology,2019,60(2):448-461.[42]WU C J,SHAN W,LIANG S M,et al.MaMPK2 enhances MabZIP93-mediated transcriptional activation of cell wall modifying genes during banana fruit ripening[J].Plant Molecular Biology,2019,101(1-2):113-127.[43]GUO Y F,ZHANG Y L,SHAN W,et al.Identification of two transcriptional activators MabZIP4/5 in controlling Aroma biosynthetic genes during banana ripening[J].Journal of Agricultural and Food Chemistry,2018,66(24):6142-6150.
相似文献/References:
[1]杨 爽,李海鹏,杨培鑑,等.微生物菌肥对草莓光合特性的影响[J].北方园艺,2014,38(11):165.
YANG Shuang,LI Hai-peng,YANG Pei-jian,et al.Effect of Biofertilizer on Photosynthesis Characters of Strawberries[J].Northern Horticulture,2014,38(01):165.
[2]杨 爽,李海鹏,杨培鑑,等.不同草莓品种对白粉病的抗性调查[J].北方园艺,2014,38(10):104.
YANG Shuang,LI Hai-peng,YANG Pei-jian,et al.Survey on the Resistance to the Powdery Mildew of Different Strawberries Cultivars[J].Northern Horticulture,2014,38(01):104.
[3]李 邵,田 婧,鲁少尉,等.设施草莓高架分层育苗系统育苗效果研究[J].北方园艺,2014,38(14):41.
LI Shao,TIAN Jing,LU Shao-wei,et al.Study on Nursery Effect of an Elevated and Layered Seedling Raising System for Greenhouse Strawberry[J].Northern Horticulture,2014,38(01):41.
[4]刘万达,张丙秀,魏媛媛,等.草莓DHAR基因密码子偏好性分析[J].北方园艺,2014,38(14):92.
LIU Wan-da,ZHANG Bing-xiu,WEI Yuan-yuan,et al.Analysis of Codon Bias of DHAR Gene in Strawberry[J].Northern Horticulture,2014,38(01):92.
[5]梁新安,梁芳芳.高品质草莓日光温室栽培技术[J].北方园艺,2013,37(13):56.
LIANG Xin-an,LIANG Fang-fang.High Quality Strawberry Cultivation Techniques in Solar Greenhouse[J].Northern Horticulture,2013,37(01):56.
[6]李星月,刘奇志,李贺勤,等.大棚草莓棉蚜分布规律及其生态调控意义研究[J].北方园艺,2014,38(02):124.
LI Xing-yue,LIU Qi-zhi,LI He-qin,et al.Research on Spatial Distribution and Ecological Control of Aphis gossypii Glover in Greenhouse Strawberry[J].Northern Horticulture,2014,38(01):124.
[7]葛水莲,焦云红,陈建中,等.苦苣菜提取物在草莓采后保鲜中的应用研究[J].北方园艺,2013,37(10):130.
GE Shui-lian,JIAO Yun-hong,CHEN Jian-zhong,et al.Application of Extracts from Sonchus oleraceus on Preservation of Postharvested Strawberry[J].Northern Horticulture,2013,37(01):130.
[8]赵菊莲.丛枝菌根真菌诱导草莓枯萎病抗性机理研究[J].北方园艺,2013,37(17):115.
ZHAO Ju-lian.Study on Mechanism of Strawberry Fusarium Wilt Resistance Induced by Arbuscular Mycorrhizae Fungus[J].Northern Horticulture,2013,37(01):115.
[9]万 红,陶 磅,孔令明,等.草莓有机生态型盆栽基质研究[J].北方园艺,2014,38(08):149.
WAN Hong,TAO Pang,KONG Ling-ming,et al.Research on Substrate for Eco-organic Pot Culture of Strawberry[J].Northern Horticulture,2014,38(01):149.
[10]李建龙,王永和,成太祥,等.蚯蚓粪改良剂对草莓产量和品质的影响[J].北方园艺,2014,38(06):163.
LI Jian-long,WANG Yong-he,CHENG Tai-xiang,et al.Effect of Earthworm-cast Modifier on the Yield and Quality of Strawberry[J].Northern Horticulture,2014,38(01):163.
备注/Memo
第一作者简介:李佳乐(1995-),女,硕士研究生,研究方向为果树栽培理论与技术。E-mail:515699748@qq.com.责任作者:汤浩茹(1963-),男,博士,教授,博士生导师,现主要从事果树遗传育种、果树种质资源与分子生物学等研究工作。E-mail:htang@sicau.edu.cn.基金项目:国家自然科学基金资助项目(31872083)。收稿日期:2021-05-19