ZHU Qianglong,ZHAO Yulong,LYU Huiling,et al.Identification and Characterization of CBL Family Genes in Watermelon [J].Northern Horticulture,2017,41(15):18-24.[doi:10.11937/bfyy.20170580]
西瓜CBL家族基因的鉴定与特征分析
- Title:
- Identification and Characterization of CBL Family Genes in Watermelon
- Keywords:
- watermelon(Citrullus lanatus); CBL gene; sequence characterization; protein structure; phylogeny; cis-elements
- 文献标志码:
- A
- 摘要:
- CBL基因在植物逆境应答过程中具有重要作用,但在西瓜作物的抗逆育种研究中鲜有相关报道。该研究利用生物信息学的分析方法从已发表的西瓜全基因组中鉴定出7个CBL基因(ClaCBL1~ClaCBL7〖STBZ〗),并分析了它们在全基因组范围内的分布情况、分子结构特征、顺式元件以及系统进化等基本特征,为进一步研究西瓜CBL基因的功能提供参考。结果表明:西瓜CBL基因在全基因组中的分布是不均匀的,其中仅ClaCBL4〖STBZ〗基因有9个外显子,其余基因均为8个外显子,编码区序列大小在639~738 bp。在进化上西瓜CBL基因分为3个不同的类群;它们编码区域内的氨基酸序列均含有能与CIPK互作的FSPF高保守性位点及能与钙离子结合的3个EF-hand结构;除了ClaCBL1预测定位在胞外基质中,其余的ClaCBL定位在细胞内的不同部位;在西瓜CBL基因启动子上游的序列中存在多个应答不同逆境和植物激素的顺式元件,而且CBL家族不同成员基因含有的顺式元件的种类和数目各不相同。上述分析显示,西瓜CBL可能参与多种生物学过程,而且不同成员存在功能上的分化。
- Abstract:
- Plant CBL family genes play important roles in response to environmental stimuli.However,the available knowledge of CBL in watermelon is insufficient.In this study,seven CBL genes (ClaCBL1-ClaCBL7) 〖STBZ〗were annotated in watermelon genome by bioinformatics method and their genomic distribution,molecular feature,phylogeny and cis-elements were also analyzed for providing valuable information for further functional dissection of watermelon CBL genes.The results showed that watermelon CBL genes were unevenly distributed in genome,and only one (ClaCBL4〖STBZ〗) had nine exons and the rest of them had eight exons.The putative coding sequence length of CBL ranges from 639 bp to 738 bp.On the basis of phylogeny,they were divided into three groups.Their coded proteins had FPSF motif,which interacted with CIPK kinases,and three EF-hand motifs,which could bind calcium ions.The putative proteins of ClaCBL were all localized into different subcellular locations except ClaCBL1 in extracellular matrix.In addition,there are several cis-elements existed in upstream sequences of watermelon CBL genes,which could response to different environmental stimuli and phytohormones.And the cis-element types and number of different watermelon CBL genes were not identical.These results indicated that watermelon CBL genes might involve in multiple biological processes and they had different functions.
参考文献/References:
[1]LUAN S.The CBL-CIPK network in plant calcium signaling[J].Trends Plant Sci,2009(1):37-42.
[2]SANCHEZ-BARRENA M J,MARTINEZ-RIPOLL M,ALBERT A.Structural biology of a major signaling network that regulates plant abiotic stress:The CBL-CIPK mediated pathway[J].Int J Mol Sci,2013(3):5734-5749. [3]KIM K N.Stress responses mediated by the CBL calcium sensors in plants[J].Plant Biotechnol Rep,2013(1):1-8. [4]PANDEY G K,CHEONG Y H,KIM K N,et al.The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis[J].Plant Cell,2004(7):1912-1924. [5]CHEONG Y H,KIM K N,PANDEY G K,et al.CBL1,a calcium sensor that differentially regulates salt,drought,and cold responses in Arabidopsis[J].Plant Cell,2003(8):1833-1845. [6]LI Z Y,XU Z S,CHEN Y,et al.A novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development[J/OL].PLoS One,2013(2):e56412. [7]FUGLSANG A T,GUO Y,CUIN T A,et al.Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein[J].Plant Cell,2007(5):1617-1634.
[8]TANG R J,ZHAO F G,GARCIA V J,et al.Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis[J].Proc Natl Acad Sci USA,2015(10):3134-3139. [9]ECKERT C,OFFENBORN J N,HEINZ T,et al.The vacuolar calcium sensors CBL2 and CBL3 affect seed size and embryonic development in Arabidopsis thaliana[J].Plant J,2014(1):146-156. [10]TANG R J,LIU H,YANG Y,et al.Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis[J].Cell Res,2012(12):1650-1665. [11]MAO J,MANIK S M N,SHI S,et al.Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana[J].Genes,2016,7(9):62. [12]QUAN R,LIN H,MENDOZA I,et al.SCABP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J].Plant Cell,2007(4):1415-1431. [13]JI H,PARDO J M,BATELLI G,et al.The salt overly sensitive (SOS) pathway:Established and emerging roles[J].Mol Plant,2013(2):275-286. [14]CHEONG Y H,SUNG S J,KIM B G,et al.Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis[J].Mol Cells,2010(2):159-165. [15]XU J,LI H D,CHEN L Q,et al.A protein kinase,interacting with two calcineurin B-like proteins,regulates K+ transporter AKT1 in Arabidopsis[J].Cell,2006(7):1347-1360.
[16]KOLUKISAOGLU U,WEINL S,BLAZEVIC D,et al.Calcium sensors and their interacting protein kinases:Genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J].Plant Physiol,2004(1):43-58. [17]GU Z,MA B,JIANG Y,et al.Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses[J].Gene,2008(1-2):1-12. [18]WANG M,GU D,LIU T,et al.Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance[J].Plant Mol Biol,2007(6):733-746. [19]李利斌,刘开昌,王殿峰,等.玉米CBL基因的生物信息学分析[J].玉米科学,2010(1):6-11.
[20]MAHAJAN S,SOPORY S K,TUTEJA N.Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum)[J].FEBS J,2006(5):907-925. [21]李利斌,刘开昌,王殿峰,等.高粱CBL家族基因的鉴定和初步分析[J].山东农业科学,2009(6):1-5. [22]李利斌,王殿峰,刘立锋,等.大白菜CBL家族基因的鉴定和遗传进化分析[J].山东农业科学,2009(5):4-7. [23]张永涛,刘立峰,李化银,等.三个新的大白菜CBL基因的鉴定和特征分析[J].山东农业科学,2012(12):7-10. [24]刘淑梅,王施慧,刘明毓,等.番茄CBL家族基因的鉴定和遗传进化分析[J].分子植物育种,2015(10):2268-2273. [25]刘明毓,纪复勤,马强,等.甜瓜CBL基因的鉴定和特征分析[J].山东农业科学,2015(10):17-21. [26]FAN M,HUANG Y,ZHONG Y,et al.Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes[J].Planta,2014(2):397-410. [27]HU B,JIN J,GUO A Y,et al.GSDS 2.0:An upgraded gene feature visualization server[J].Bioinformatics,2015(8):1296-1297.
[28]TAMURA K,STECHER G,PETERSON D,et al.MEGA6:Molecular evolutionary genetics analysis version 6.0[J].Mol Biol Evol,2013(12):2725-2729.
[29]HORTON P,PARK K J,OBAYASGI T,et al.WoLF PSORT:Protein localization predictor[J].Nucleic Acids Res,2007(Web Server issue):585-587. [30]EMANUELSSON O,BRUNAK S,VON H G,et al.Locating proteins in the cell using TargetP,SignalP and related tools[J].Nat Protoc,2007(4):953-971.
[31]LESCOT M,DHAIS P,THIJS G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Res,2002(1):325-327.
相似文献/References:
[1]林燚,王驰,杨瑜斌,等.西瓜嫁接栽培植株凋萎原因及对策[J].北方园艺,2013,37(04):59.
[2]陈 潇,盛萍萍,刘润进,等.西瓜与辣椒间作体系接种AM真菌对连作西瓜植株[J].北方园艺,2014,38(12):6.
CHEN Xiao,SHENG Ping-ping,LIU Run-jin,et al.Effect of Intercropping System of Pepper-Watermelon Crops Inoculating Arbuscular Mycorrhizal Fungus on Growth and Defence Enzymes Activity of the Continuous Cropping Watermelon[J].Northern Horticulture,2014,38(15):6.
[3]李 勤,皇甫自起,陈大伟.豫东地区地膜覆盖栽培西瓜品种比较试验[J].北方园艺,2014,38(12):23.
LI Qin,HUANGFU Zi-qi,CHEN Da-wei.Comparison Test on Film Mulching Cultivating Watermelon Varieties in the East of Henan Province[J].Northern Horticulture,2014,38(15):23.
[4]郭松,刘声峰,于 蓉,等.压砂地西瓜水肥耦合模型及优化组合方案[J].北方园艺,2013,37(17):8.
GUO Song,LIU Sheng-feng,YU Rong,et al.Optimized Combination Scheme and Water-Fertilizer Coupling Model on Watermelon in Sand Field[J].Northern Horticulture,2013,37(15):8.
[5]徐雪莲,张银东,符悦冠,等.蚜虫侵害对西瓜保护酶活性的影响[J].北方园艺,2014,38(01):109.
XU Xue-lian,ZHANG Yin-dong,FU Yue-guan,et al.Effect of Aphid Invasion on Protective Enzyme Activities of Different Watermelon Varieties[J].Northern Horticulture,2014,38(15):109.
[6]王林闯,汪翠芳,罗德旭,等.木薯渣复合基质对西瓜幼苗生长的影响[J].北方园艺,2014,38(04):5.
WANG Lin-chuang,WANG Cui-fang,LUO De-xu,et al.Effect of Compound Substrate With Cassava Dregs on the Growth of Watermelon Seedling[J].Northern Horticulture,2014,38(15):5.
[7]韩亚楠,毕美光,刘润进,等.AM真菌对连作西瓜生长及其枯萎病的影响[J].北方园艺,2013,37(13):150.
HAN Ya-nan,BI Mei-guang,LIU Run-jin,et al.Effects of Arbuscular Mycorrhizal Fungus on Growth and Fusarium Wilt of Watermelon Seedlings in Continuous Cropping Soils[J].Northern Horticulture,2013,37(15):150.
[8]杜社妮,白岗栓,边利军.陕北丘陵沟壑区西瓜套种向日葵栽培技术[J].北方园艺,2014,38(02):56.
DU She- ni,BAI Gang- shuan,BIAN Li- jun.Cultivation Technology of Watermelon/Sunflower Intercropping in Loess Hilly and Gully Region of Northern Shaanxi[J].Northern Horticulture,2014,38(15):56.
[9]缑艳霞,张明方.西瓜花药离体培养影响因子研究[J].北方园艺,2013,37(10):117.
GOU Yan-xia,ZHANG Ming-fang.Study on Factors Affecting Anther Culture in virto of Citrullus lanatus[J].Northern Horticulture,2013,37(15):117.
[10]田 梅,于 蓉,董 瑞,等.压砂地不同西瓜品种光合作用日变化研究[J].北方园艺,2013,37(23):27.
TIAN Mei,YU Rong,DONG Rui,et al.Study on Photosynthetic Diurnal Variation of Different Cultivars of Watermelon in Gravel-mulched Field[J].Northern Horticulture,2013,37(15):27.
备注/Memo
第一作者简介:朱强龙(1990-),男,博士研究生,研究方向为西瓜分子遗传育种。E-mail:longzhu2011@126.com.责任作者:高鹏(1982-),男,博士,副研究员,硕士生导师,现主要从事西甜瓜分子遗传育种等研究工作。E-mail:gaopeng_neau@163.com.基金项目:国家自然科学基金面上资助项目(31572144);国家西甜瓜产业技术体系-分子育种岗位资助项目(CARS-26-02)。 收稿日期:2017-03-30