LI Yi,CHEN Jinping,LI Xiangyu,et al.Effects of Different Agricultural Land Use Patterns on Soil Heavy Metal Content and Ecological Risk Assessment[J].Northern Horticulture,2021,(18):95-102.[doi:10.11937/bfyy.20210544]
不同农业土地利用方式对土壤重金属含量影响及生态风险评价
- Title:
- Effects of Different Agricultural Land Use Patterns on Soil Heavy Metal Content and Ecological Risk Assessment
- 关键词:
- 不同农业土地利用方式; 土壤重金属; 生态风险评价
- 文献标志码:
- A
- 摘要:
- 以撂荒地、水稻田和旱田为研究对象,分别测定其土壤As、Cd、Cu、Pb含量变化特征,结合单项污染指数法和潜在生态风险指数法,对研究区土壤进行生态风险评价,了解不同农业土地利用方式对土壤重金属污染状况及其生态风险,以期为农用地土地利用方式的选择提供参考依据。结果表明:0~50 cm土层中,土壤As含量平均值表现为旱田(26.96±11.52)mg·kg-1>水稻田(11.05±3.72)mg·kg-1>撂荒地(9.04±6.87)mg·kg-1;土壤Cd含量平均值表现为旱田(0.64±0.03)mg·kg-1>水稻田(0.44±0.18)mg·kg-1>撂荒地(0.25±0.11)mg·kg-1;土壤Cu含量平均值表现为旱田(34.11±14.83)mg·kg-1>水稻田(20.44±6.62)mg·kg-1>撂荒地(13.90±6.64)mg·kg-1;土壤Pb含量平均值表现为水稻田(39.26±9.85)mg·kg-1>旱田(38.87±7.10)mg·kg-1>撂荒地(21.94±9.68)mg·kg-1。单项污染指数分析结果表明,4种重金属在水稻田和撂荒地中均无污染,而在旱田中As和Cd为轻度污染。潜在生态风险指数分析结果表明,4种重金属单因子潜在风险指数均属于轻微生态危害,Er值为Cd>As>Cu>Pb,综合潜在生态风险指数RI均小于150,为轻微生态危害,其中以旱田土壤RI值最大,土壤重金属以Cd的贡献率最大。可见不同农业土地利用方式下,旱田对重金属的积累能力最强,水稻田次之,撂荒地最弱。农业活动虽一定程度上起到降低土壤pH的作用,但促进了土壤对重金属的积累。
- Abstract:
- Abandoned land,paddy fields and dry fields were selected as the research objects,and the change characteristics of the content of As,Cd,Cu and Pb in the soil respectively were determinded,combined with the individual pollution index method and the potential ecological risk index method,conduct ecological risk assessment on the soil in the study area,in order to understand the pollution status and ecological risks of heavy metals in the soil by different agricultural land use pattern and provide a scientific reference for the selection of agricultural land use pattern.The results showed that in the 0-50 cm soil layer,the average value of As content in the soil was as follows dry land 〖JP3〗(26.96±11.52)mg·kg-1>paddy field (11.05±3.72)mg·kg-1>abandoned land (9.04±6.87)mg·kg-1;〖JP〗the average value of Cd content in the soil was as follows dry land (0.64±0.03)mg·kg-1>paddy field (0.44±0.18)mg·kg-1>abandoned land (0.25±0.11)mg·kg-1;the average value of Cu content in the soil was as follows dry land (34.11±14.83)mg·kg-1>paddy field (20.44±6.62)mg·kg-1>abandoned land (13.90±6.64)mg·kg-1;the average value of Pb content in the soil was as follows paddy field (39.26±9.85)mg·kg-1>dry field (38.87±7.10)mg·kg-1>abandoned land (21.94±9.68)mg·kg-1.The results of individual pollution index analysis showed that the four heavy metals were not polluted in paddy fields and abandoned land,while As and Cd in dry fields were slightly polluted.The results of the potential ecological risk index showed that the four single-factor potential risk indexes of heavy metals were all classified as minor ecological hazards,and the order of Er value was Cd>As>Cu>Pb.The comprehensive potential ecological risk index RI was all less than 150,indicating minor ecological hazards.Among them,dry soil had the largest RI value,and soil heavy metals had the largest contribution rate of Cd.It could be seen that under different agricultural land use pattern,dry land had the strongest ability to accumulate heavy metals,followed by paddy fields,and abandoned land was the weakest.Although agricultural activities played a role in reducing soil pH to a certain extent,but they promoted the accumulation of heavy metals in the soil.
参考文献/References:
[1]问小莉,支光琴.土壤中重金属含量检测技术分析[J].中国金属通报,2020(2):152-153.[2]彭松发,罗时黛,雷水平.萍乡市芦溪县农田土壤中重金属含量监测结果分析[J].实验与检验医学,2018,36(6):994-996.[3]陈雯,龙翔,王宁涛,等.福州市土壤重金属污染现状评价与分析[J].安全与环境工程,2015,22(5):68-72.[4]薛鲁燕,张海峰,蔡葵,等.论农田土壤重金属污染的危害及修复技术[J].农业与技术,2020,40(13):41-42.[5]邓新,温璐璐,迟鑫姝.镉对人体健康危害及防治研究进展[J].中国医疗前沿,2010,5(10):4-5.[6]HJ 680-2013.土壤和沉淀物汞、砷、硒、铋、锑的测定微波消解/原子荧光法[S].北京:中国环境科学出版社,2013.[7]GB/T 17141-1997.土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法[S].北京:中国环境监测总站,1997.[8]HJ 491-2019.土壤和沉淀物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法[S].北京:中国环境出版社,2019.[9]HJ 962-2018.土壤pH值的测定电位法[S].北京:中国环境出版社,2018.[10]陈泽华,焦思,余爱华,等.土壤重金属污染评价方法探析:以南京市为例[J].森林工程,2020,36(3):28-36.[11]GB15618-2018.土壤环境质量农用地土壤污染风险管控标准(试行)[S].北京:中国环境出版社,2018.[12]HAKANSON L.An ecological risk index for aquatic pollution control[J].A Sedimentological Approach,1980,14(8):975-1001.[13]范拴喜,甘卓亭,李美娟,等.土壤重金属污染评价方法进展[J].中国农学通报,2010,26(17):310-315.[14]郭笑笑,刘丛强,朱兆洲,等.土壤重金属评价方法[J].生态学杂志,2011,30(5):889-896.[15]朱丹尼,邹胜章,周长松,等.不同耕作类型下土壤-农作物系统中汞、砷含量与生态健康风险评价[J].中国地质,2020,47(5):1-16.[16]徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.[17]杨红,徐唱唱,赛曼,等.不同土地利用方式对土壤含水量、pH值及电导率的影响[J].浙江农业学报,2016,28(11):1922-1927.[18]何纪力,徐光炎,朱惠民,等.江西省土壤环境背景值研究[M].北京:中国环境科学出版社,2006.[19]梁玉峰,谭长银,曹雪莹,等.不同土地利用方式下土壤养分和重金属元素垂直分布特征[J].环境工程学报,2018,12(6):1791-1799.[20]张晓艺.农田土壤重金属污染状况及修复技术研究[J].中国资源综合利用,2019,37(4):86-88.[21]任华丽,崔保山,白军红,等.哈尼梯田湿地核心区水稻土重金属分布与潜在的生态风险[J].生态学报,2008(4):1625-1634.[22]高阳俊,张乃明.施用磷肥对环境的影响探讨[J].中国农学通报,2003(6):162-165.[23]郑喜珅,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002(1):79-84.[24]林大松,徐应明,孙国红,等.土壤pH、有机质和含水氧化物对镉、铅竞争吸附的影响[J].农业环境科学学报,2007,26(2):510-515.[25]段燕,汪丙国,王慧敏,等.冲积和湖积成因土壤Cd的吸附特征:以安徽省当涂县为例[J].地球科学,2021,46(4):1490-1504.[26]王玉军,周东美,孙瑞娟,等.土壤中铜、铅离子的竞争吸附动力学[J].中国环境科学,2006(5):555-559.
相似文献/References:
[1]陈碧华,郭卫丽,王广印,等.地肤对大棚菜田土壤重金属的修复效应研究[J].北方园艺,2016,40(07):170.[doi:10.11937/bfyy.201607043]
CHEN Bihua,GUO Weili,WANG Guangyin,et al.Research of Remediation Effect of Kochia scoparia on Heavy Metal Contaminated Vegetable Field Soil in Plastic Shed[J].Northern Horticulture,2016,40(18):170.[doi:10.11937/bfyy.201607043]
[2]张路,王利华,桂和荣,等.土壤重金属胁迫与植物相关miRNA的研究进展[J].北方园艺,2017,41(18):180.[doi:10.11937/bfyy.20165188]
ZHANG Lu,WANG Lihua,GUI Herong,et al.Progress on the Soil Heavy Metal Stress and Associated miRNA of Plant[J].Northern Horticulture,2017,41(18):180.[doi:10.11937/bfyy.20165188]
[3]孙全平.拉萨市典型区域农田土壤重金属空间分布及生态风险评价[J].北方园艺,2018,42(22):124.[doi:10.11937/bfyy.20174296]
Spatial Distribution and Risk Assessment of Soil Heavy Metals in Typical Region of Lhasa City.Spatial Distribution and Risk Assessment of Soil Heavy Metals in Typical Region of Lhasa City[J].Northern Horticulture,2018,42(18):124.[doi:10.11937/bfyy.20174296]
[4]周丽,杨丰,金宝成,等.喀斯特山区不同土地利用方式对土壤重金属的影响[J].北方园艺,2019,43(08):110.[doi:10.11937/bfyy.20183380]
ZHOU Li,YANG Feng,JIN Baocheng,et al.Influence of Different Land Use Types on Soil Heavy Metals in the Karst Mountain Area[J].Northern Horticulture,2019,43(18):110.[doi:10.11937/bfyy.20183380]
[5]赵瑞芬,程滨,滑小赞,等.忻州市灌区土壤重金属污染评价及分布特征分析[J].北方园艺,2021,(06):81.[doi:10.11937/bfyy.20201393]
ZHAO Ruifen,CHENG Bin,HUA Xiaozan,et al.Evaluation and Distribution Characteristics of Heavy Metal Pollution in Soil of Xinzhou Irrigation District[J].Northern Horticulture,2021,(18):81.[doi:10.11937/bfyy.20201393]
[6]柳小兰,方慧,王道平,等.碳酸盐岩地区水旱轮作土壤重金属垂直分布特征及赋存形态研究[J].北方园艺,2022,(11):67.[doi:10.11937/bfyy.20215286]
LIU Xiaolan,FANG Hui,WANG Daoping,et al.Study on Vertical Distribution Characteristics and Occurrence Forms of Heavy Metals in Soil of Water and Drought Rotation in Carbonate Area[J].Northern Horticulture,2022,(18):67.[doi:10.11937/bfyy.20215286]
[7]杨晓杰,崔向新,珊丹,等.荒漠草原金矿周边土壤重金属分布特征及生态风险评价[J].北方园艺,2022,(19):78.[doi:10.11937/bfyy.20220193]
YANG Xiaojie,CUI Xiangxin,SHAN Dan,et al.Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Soils Around Gold Deposits in Desert Steppe[J].Northern Horticulture,2022,(18):78.[doi:10.11937/bfyy.20220193]
备注/Memo
第一作者简介:李奕(1986-),男,博士,讲师,现主要从事恢复生态和森林水文等研究工作。E-mail:liyi3499668@163.com.基金项目:江西省教育厅科学技术研究资助项目(202703);江西省高等学校大学生创新创业训练资助项目(S202010895021)。收稿日期:2021-02-01