LI Fei,DONG Jing,ZHAO Zhiwei,et al.Effects of Nutrient Solution Concentration and Ratio of NO-3-N to NH+4-N on Tomato Growth in Soilless Culture[J].Northern Horticulture,2020,44(24):39-45.[doi:10.11937/bfyy.20200914]
基质栽培中营养液浓度及硝铵比对番茄生长的影响
- Title:
- Effects of Nutrient Solution Concentration and Ratio of NO-3-N to NH+4-N on Tomato Growth in Soilless Culture
- Keywords:
- soilless culture; nitrogen form; root; greenhouse vegetable
- 文献标志码:
- A
- 摘要:
- 以番茄为试材,采用无机基质栽培的方法,研究了不同营养液浓度(氮浓度分别为3.2 mmol?L-1(T0.4)、5.6 mmol?L-1(T0.7)、8.0 mmol?L-1(T1)、16.0 mmol?L-1(T2)、24.0 mmol?L-1(T3))和硝铵配比(NO-3-N/NH+4-N=100/0(R100)、75/25(R75)、50/50(R50)、25/75(R25)、0/100(R0))对番茄苗期生长的影响。结果表明:营养液浓度和硝铵比对番茄株高和生物量的影响有显著的交互作用。在硝态氮占主导的情况下(R100和R75处理),T2处理番茄地上部生物量最大,较其它处理显著提高7.8%~62.2%。在T0.7与T1浓度下,R75处理较R100处理地上部生物量显著提高7.6%和13.6%。铵态氮含量占主导的R25和R0处理显著降低番茄株高和地上部生物量,降幅达19.6%~26.9%和17.8%~48.6%。总根长、根表面积和根系生物量随营养液浓度的升高而下降,在低浓度条件下(T0.4)完全硝态氮更有利于番茄根系的生长,R100处理根表面积、总根长和根系生物量较其它硝铵比处理显著提高23.7%~88.7%、22.2%~112.7%和5.0%~180.0%,T0.4处理根冠比较T1处理显著提高1.3~1.7倍。硝铵复配相较于单一氮源使SPAD值提高9.9%~13.2%。综上,苗期以壮根为主要目的的管理策略中,推荐营养液浓度EC值控制在0.6~1.4 mS?cm-1,含盐量控制在0.51‰~1.01‰;此时氮浓度为3.2~5.6 mmol?L-1,硝铵比推荐75/25。
- Abstract:
- Tomato was used as test material,a pot experiment was conducted to evaluate the effects of nutrient solution concentrations (the N content was 3.2 mmol?L-1 (T0.4),5.6 mmol?L-1 (T0.7),8.0 mmol?L-1 (T1),16.0 mmol?L-1 (T2),24.0 mmol?L-1 (T3)) and nitrate-ammonium ratio(NO-3-N/NH+4-N=100/0(R100),75/25(R75),50/50(R50),25/75(R25),0/100(R0)) on tomato seedling growth in soilless culture.The results showed that there was a significant interaction between concentration and ratios of NO-3-N to NH+4-N on plant height and biomass of tomato.Aboveground biomass of tomato in T2 treatment was the largest,which was significantly increased by 7.8%-62.2% compared with other concentration treatments under the treatments of R100 and R75.In the concentrations treatments of T0.7 and T1,the aboveground biomass of R75 treatment significantly increased by 7.6% and 13.6% than R100 treatment.In the treatments of R25 and R0,which the NH+4-N content was higher than NO-3-N,tomato plant height significantly reduced by 19.6% to 26.9%,and aboveground biomass reduced by 17.8% to 48.6% than the treatment of R100.Total root length,root surface area and root biomass decreased with the increase of nutrient solution concentration.Under the lower concentration (T0.4) of nutrient solution,nitrate nitrogen was more beneficial to the growth of tomato roots,and root surface area,total root length and root biomass of R100 treatment were significantly increased by 23.7%-88.7%,22.2%-112.7% and 5.0%-180.0% compared with other ratio of nitrate to ammonium treatments.Root-shoot ratio of T0.4 treatment was significantly higher by 1.3-1.7 times than T1 treatment.The SPAD value in the treatment of combined addition of NO-3-N and NH+4-N increased by 9.9% to 13.2% than the alone addition of NO-3-N or NH+4-N.In general,in the stage of tomato seedling,the recommended nutrient solution concentration EC value was 0.6-1.4 mS?cm-1 and the salt content was 0.15‰ and 1.01‰,in which the N concentration was 3.2-5.6 mmol?L-1,and the suitable the ratio of nitrate to ammonium was 75/25,the recommended concentration and NO-3-N/NH+4-N ratio could enhance the growth of tomato roots.
参考文献/References:
[1]李天来,许勇,张金霞.我国设施蔬菜、西甜瓜和食用菌产业发展的现状及趋势[J].中国蔬菜,2019(11):6-9.[2]张真和,马兆红.我国设施蔬菜产业概况与“十三五”发展重点:中国蔬菜协会副会长张真和访谈录[J].中国蔬菜,2017(5):1-5.[3]张北赢,陈天林,王兵.长期施用化肥对土壤质量的影响[J].中国农学通报,2010,26(11):182-187.[4]巨晓棠,谷保静.我国农田氮肥施用现状、问题及趋势[J].植物营养与肥料学报,2014,20(4):783-795.[5]黄绍文,唐继伟,李春花,等.我国蔬菜化肥减施潜力与科学施用对策[J].植物营养与肥料学报,2017,23(6):1480-1493.[6]刘霓红,蒋先平,程俊峰,等.国外有机设施园艺现状及对中国设施农业可持续发展的启示[J].农业工程学报,2018,34(15):1-9.[7]费颖恒,黄艺,严昌荣,等.大棚种植对农业土壤环境的胁迫[J].农业环境科学学报,2008,27(1):243-247.[8]赵翠英,过亚东.设施农业土壤质量问题的研究[J].农业科技通讯,2015(2):124-127.[9]史静,张乃明,包立.我国设施农业土壤质量退化特征与调控研究进展[J].中国生态农业学报,2013,21(7):787-794.[10]姜勇,张玉革,梁文举.温室蔬菜栽培对土壤交换性盐基离子组成的影响[J].水土保持学报,2005(6):80-83.[11]李婷婷,马蓉丽,成妍,等.中国蔬菜基质栽培研究新进展[J].农学学报,2013,3(4):30-34.[12]杜娅丹.无土栽培番茄对不同氮肥形态和浓度的响应[D].杨凌:西北农林科技大学,2016.[13]MAGALHAES J R,HUBER D M .Response of ammonium assimilation enzymes to nitrogen form treatments in different plant species[J].Journal of Plant Nutrition,1991,14(2):175-185.[14]林碧英,张瑜,陈青青,等.不同施肥水平对温室樱桃番茄生长和产量的影响[J].西北农业学报,2010,19(5):122-126.[15]袁野,吴凤芝,周新刚,等.光氮互作对番茄生长发育的影响[J].中国蔬菜,2009,1(22):28-32.[16]李海平,郭荣,李灵芝,等.氮素对温室番茄果实发育及其氮吸收量的影响[J].核农学报,2010,24(2):365-369.[17]卢颖林,李庆余,徐新娟,等.不同形态氮素对番茄幼苗体内营养元素含量的影响[J].中国农学通报,2010,26(21):122-130.[18]汪建飞,董彩霞,沈其荣,等.不同铵硝比对菠菜生长、安全和营养品质的影响[J].土壤学报,2007,44(4):683-688.[19]张富仓,康绍忠,李志军.氮素形态对白菜硝酸盐累积和养分吸收的影响[J].园艺学报,2003,30(1):93-94.[20]周箬涵,郁继华,杨兵丽,等.不同氮素形态及配比对娃娃菜产量、品质及其养分吸收的影响[J].华北农学报,2015,30(3):216-222.[21]刘瑞平,冯静,骆洪义.营养液中不同氮素水平对基质栽培番茄产量和品质的影响[J].北方园艺,2015(20):23-26.[22]谢小玉,邹志荣,江雪飞,等.中国蔬菜无土栽培基质研究进展[J].中国农学通报,2005(6):280-283.[23]柳美玉,曹红霞,杜贞其,等.营养液浓度对番茄营养生长期干物质累积及养分吸收的影响[J].西北农林科技大学学报(自然科学版),2017(4):119-126.[24]肖云华,吕婷婷,唐晓清,等.追施氮肥量对菘蓝根的外形品质、干物质积累及活性成分含量的影响[J].植物营养与肥料学报,2014(2):437-444.[25]LAW C N,SNAPE J W,WORLAND A J .The genetical relationship between height and yield in wheat[J].Heredity,1978,40(1):133-151.[26]王启现,王璞,杨相勇,等.不同施氮时期对玉米根系分布及其活性的影响[J].中国农业科学,2003(12):1469-1475.[27]李翠兰,李志洪,张晋京,等.不同肥料处理对玉米苗期根系生长的影响[J].吉林农业大学学报,2001,23(3):87-89.[28]曹翠玲,李生秀.氮素形态对作物生理特性及生长的影响[J].华中农业大学学报,2004,23(5):581-586.[29]BHAT K K S .Nutrient inflows into apple roots[J].Plant and Soil,1983,71(1-3):371-380.[30]SCHUBERT S,SCHUBERT E,MENGEL K.Effect of low pH of the root medium on proton release,growth,and nutrient uptake of field beans (Vicia faba)[J].Plant & Soil,1990,124(2):239-244.[31]朱毅勇,曾后清,狄廷均,等.细胞膜质子泵在水稻耐铵机制中的作用机理探讨[J].中国水稻科学,2011,25(1):112-118.
相似文献/References:
[1]邱志平,杨其长,刘文科,等.纳米TiO_2光催化系统的构建及其去除营养液中根分泌物的效果[J].北方园艺,2013,37(04):38.
[2]苏頔,方正,李英丽,等.不同氮素形态配比对百合生长发育的影响[J].北方园艺,2012,36(02):67.
SU Di,FANG Zheng,LI Ying-li,et al.Effect of Different NH4+-N/NO3--N Ratios on the Growth of Lilium[J].Northern Horticulture,2012,36(24):67.
[3]律凤霞,李猷,高璿濛.榆黄蘑菌糠在番茄无土栽培中的应用研究[J].北方园艺,2013,37(08):159.
LV Feng-xia,LI You,GAO Xuan-meng.Research of Fungus Chaff of Pleurotus citrinipileatus Sing on the Application of Soilless Cultivation of Tomato[J].Northern Horticulture,2013,37(24):159.
[4]刘婧.无土栽培技术的应用与发展[J].北方园艺,2012,36(16):204.
LIU Jing.Application and Development of Soilless Culture[J].Northern Horticulture,2012,36(24):204.
[5]周海霞,李武高,吴小波.河南省秋延后水果型黄瓜无土栽培品种比较试验[J].北方园艺,2012,36(22):40.
ZHOU Hai-xia,LI Wu-gao,WU Xiao-bo.Soilless Cultivation Test of Fall Autumn Fruit Varieties Cucumber in Henan Province[J].Northern Horticulture,2012,36(24):40.
[6]吴冬青,刘明池,李明,等.沼液营养液对快菜生长和生理特性的影响[J].北方园艺,2012,36(08):27.
WU Dong-qing,LIU Ming-chi,LI Ming,et al.Effect of Biogas Slurry as Nutrient Solutions on the Growth and Physiological Characteristics of Fast Vegetable[J].Northern Horticulture,2012,36(24):27.
[7]马福生,刘洪禄,吴文勇,等.无土栽培基质物理特性及鸟巢蕨栽培技术研究[J].北方园艺,2012,36(21):51.
MA Fu-sheng,LIU Hong-lu,WU Wen-yong,et al.Study on Physical Characters of Soilless Cultivation Matrix and Cultivation Techniques of Neottopteris antique[J].Northern Horticulture,2012,36(24):51.
[8]冯静,骆洪义,刘瑞平,等.不同N水平对基质栽培黄瓜产量与品质的影响[J].北方园艺,2014,38(24):164.
FENG Jing,LUO Hong-yi,LIU Rui-ping,et al.Effect of Different N Level on the Cucumber Yield and Quality in Substrate Culture[J].Northern Horticulture,2014,38(24):164.
[9]牛玉,戚志强,刘昭华,等.苦瓜无土栽培技术研究[J].北方园艺,2015,39(07):36.[doi:10.11937/bfyy.201507011]
NIU Yu,QI Zhi-qiang,LIU Zhao-hua,et al.Study on the Soilless Cultivation Technology of Bitter Gourd[J].Northern Horticulture,2015,39(24):36.[doi:10.11937/bfyy.201507011]
[10]隋明浩,张天柱.规模化黄瓜无土栽培结果期椰糠营养液配方的优化[J].北方园艺,2015,39(18):63.[doi:10.11937/bfyy.201518016]
SUI Minghao,ZHANG Tianzhu.Study on Coconut Chaff Nutrient Solution Formula for Cucumber During Fruit-bearing Stages in Soiless Culture[J].Northern Horticulture,2015,39(24):63.[doi:10.11937/bfyy.201518016]
备注/Memo
第一作者简介:李飞(1994-),女,硕士研究生,研究方向为设施蔬菜水肥资源高效利用。E-mail:lifei11270@163.com.责任作者:梁斌(1983-),男,博士,副教授,硕士生导师,现主要从事设施蔬菜水肥资源高效利用等研究工作。E-mail:liangbin306@163.com.基金项目:国家重点研发计划资助项目(2017YFD0201507);山东省重点研发计划资助项目(2019GNC106015)。收稿日期:2020-03-12