[1]邓竹英,梁大成.拟南芥/本生烟远缘嫁接体中移动性mRNA分子检测[J].北方园艺,2020,44(16):22-28.[doi:10.11937/bfyy.20194602]
 DENG Zhuying,LIANG Dacheng.Identification of Mobile mRNAs in Arabidopsis/Nicotiana benthamiana Hetero-grafts[J].Northern Horticulture,2020,44(16):22-28.[doi:10.11937/bfyy.20194602]
点击复制

拟南芥/本生烟远缘嫁接体中移动性mRNA分子检测

参考文献/References:

[1]THIEME C J,ROJAS-TRIANA M,STECYK E,et al.Endogenous Arabidopsis messenger RNAs transported to distant tissues[J].Nature Plants,2015,1(4):15025.[2]SPIEGELMAN Z,GOLAN G,WOLF S.Don′t kill the messenger:Long-distance trafficking of mRNA molecules[J].Plant Science,2013,213:1-8.[3]BANERJEE A K,CHATTERJEE M,YU Y Y,et al.Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway[J].The Plant Cell,2006,18(12):3443-3457.[4]LOUGH T J,LUCAS W J.Integrative plant biology:Role of phloem long-distance macromolecular trafficking[J].Annual Review of Plant Biology,2006,57(1):203-232.[5]TURGEON R,WOLF S.Phloem transport:Cellular pathways and molecular trafficking[J].Annual Review of Plant Biology,2009,60(1):207-221.[6]ATKINS C A,SMITH P M C,RODRIGUEZ-MEDINA C.Macromolecules in phloem exudates:A review[J].Protoplasma,2011,248(1):165-172.[7]LIN M K,BELANGER H,LEE Y J,et al.Floweing locus T protein May act as the long-distance florigenic signal in the cucurbits[J].The Plant Cell,2007,19(5):1488-1506.[8]CORBESIER L,VINCENT C,JANG S,et al.FT protein movement contributes to long-distance signaling in floral induction of arabidopsis[J].Science,2007,316(5827):1030-1033.[9]HUEN A K,RODRIGUEZ-MEDINA C,HO A Y Y,et al.Long-distance movement of phosphate starvation-responsive microRNAs in Arabidopsis[J].Plant Biology,2017,19(4):643-649.[10]KHALDUN A B M,HUANG W J,LV H,et al.Comparative profiling of miRNAs and target gene identification in distant-grafting between tomato and Lycium(goji berry)[J].Frontiers in Plant Science,2016(7):1475.[11]PAGLIARANI C,VITALI M,FERRERO M,et al.The accumulation of miRNAs differentially modulated by drought stress is affected by grafting in grapevine[J].Plant Physiology,2017,173(4):2180-2195.[12]BROSNAN C A,VOINNET O.Cell-to-cell and long-distance siRNA movement in plants:Mechanisms and biological implications[J].Current Opinion in Plant Biology,2011,14(5):580-587.[13]LIANG D C,WHITE R G,WATERHOUSE P M.Gene silencing in Arabidopsis spreads from the root to the shoot,through a gating barrier,by template-dependent,nonvascular,cell-to-cell movement[J].Plant Physiology,2012,159(3):984-1000.[14]ZHANG W N,KOLLWIG G,STECYK E,et al.Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers[J].The Plant Journal,2014,80(1):106-121.[15]KIM G,LEBLANC M L,WAFULA E K,et al.Genomic-scale exchange of mRNA between a parasitic plant and its hosts[J].Science,2014,345(6198):808-811.[16]HUANG N C,YU T S.The sequences of Arabidopsis GA-insensitive RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking[J].The Plant Journal,2009,59(6):921-929.[17]HAYWOOD V,YU T S,HUANG N C,et al.Phloem long-distance trafficking of gibberellic acid insensitive RNA regulates leaf development[J].The Plant Journal,2005,42(1):49-68.[18]YANG H W,YU T S.Arabidopsis floral regulators FVE and AGL24 are phloem-mobile RNAs[J].Botanical Studies,2010,51(1):17-26.[19]YANG Y Z,MAO L Y,JITTAYASOTHORN Y,et al.Messenger RNA exchange between scions and rootstocks in grafted grapevines[J].BMC Plant Biology,2015,15:251.[20]XU H Y,ZHANG W N,LI M F,et al.Gibberellic acid insensitive mRNA transport in both directions between stock and scion in malus[J].Tree Genetics & Genomes,2010,6(6):1013-1019.[21]XU H Y,IWASHIRO R,LI T Z,et al.Long-distance transport of gibberellic acid insensitive mRNA in Nicotiana benthamiana[J].BMC Plant Biology,2013,13(1):165.[22]LEBLANC M,KIM G,PATEL B,et al.Quantification of tomato and Arabidopsis mobile RNAs trafficking into the parasitic plant Cuscuta pentagona[J].New Phytologist,2013,200(4):1225-1233.[23]HUANG N C,LUO K R,YU T S.Mobility of antiflorigen and PEBP mRNAs in Toma to-tobacco heterografts[J].Plant Physiology,2018,178(2):783-794.[24]XIA C,ZHENG Y,HUANG J,et al.Elucidation of the mechanisms of long-distance mRNA movement in a Nicotiana benthamiana/tomato heterograft system[J].Plant Physiology,2018,177(2):745-758.[25]NOTAGUCHI M,OKAMOTO S.Dynamics of long-distance signaling via plant vascular tissues[J].Frontiers in Plant Science,2015(6):161.[26]ZHANG Z L,ZHENG Y,HAM B K,et al.Vascular-mediated signalling involved in early phosphate stress response in plants[J].Nature Plants,2016,2(4):16033.[27]JAILANI A A K,SOLANKI V,ROY A,et al.A CGMMV genome-replicon vector with partial sequences of coat protein gene efficiently expresses GFP in Nicotiana benthamiana[J].Virus Research,2017,233:77-85.

相似文献/References:

[1]陈昱,官丽莉,杨晶,等.植物金属硫蛋白的研究进展[J].北方园艺,2014,38(07):185.
 CHEN Yu,GUAN Li-li,YANG Jing,et al.Research Progress on Plant Metallothionein[J].Northern Horticulture,2014,38(16):185.
[2]郭涛1,2,晁跃辉,等.拟南芥NCED4基因的克隆及初步功能鉴定[J].北方园艺,2014,38(17):105.
 GUO Tao,CHAO Yue-hui,et al.Cloning and Transformation of NCED4 Gene from Arabidopsis thaliana[J].Northern Horticulture,2014,38(16):105.
[3]王 崇,程玉祥.AtGDPD-Like 6和AtGDPD-Like 7基因启动子表达特性及AtGDPD-Like 6蛋白定位[J].北方园艺,2015,39(11):90.[doi:10.11937/bfyy.201511022]
 WANG Chong,CHENG Yu-xiang.The Expression Patterns of Arabidopsis thaliana GDPDL6 and GDPDL7 and the Subcellular Localization of GDPDL6[J].Northern Horticulture,2015,39(16):90.[doi:10.11937/bfyy.201511022]
[4]杨淑萍,马伟琴,刘阳,等.模式生物拟南芥研究进展的文献计量分析[J].北方园艺,2015,39(19):195.[doi:10.11937/bfyy.201519049]
 YANG Shuping,MA Weiqin,LIU Yang,et al.Bibliometric Analysis of Research Progress on Model Species Arabidopsis thaliana[J].Northern Horticulture,2015,39(16):195.[doi:10.11937/bfyy.201519049]
[5]周   索,杜   丽.四种生长素对拟南芥根生长发育的影响[J].北方园艺,2008,32(03):0.[doi:10.11937/bfyy.200803024]
 ZHOU Suo,DU Li.Study on the Root Growth and Development of Arabidopsis thaliana[J].Northern Horticulture,2008,32(16):0.[doi:10.11937/bfyy.200803024]
[6]张亮,马灵玉,王太霞.低剂量60Co-γ辐照刺激拟南芥植株生长的效应[J].北方园艺,2016,40(23):28.[doi:10.11937/bfyy.201623007]
 ZHANG Liang,MA Lingyu,WANG Taixia.Effect of Low-dose Gamma Irradiation on Growth and Development of Arabidopsis Plants[J].Northern Horticulture,2016,40(16):28.[doi:10.11937/bfyy.201623007]
[7]宿强,曾会明,许立新,等.紫花苜蓿MsSAG[STBX]113基因的克隆及对拟南芥的转化[J].北方园艺,2018,42(06):10.[doi:10.11937/bfyy.20172691]
 XU Qiang,ZENG Huiming,XU Lixin,et al.Cloning of MsSAG113 Gene From Medicago sativa L. and Transformation of Arabidopsis thaliana[J].Northern Horticulture,2018,42(16):10.[doi:10.11937/bfyy.20172691]
[8]唐尧,张微,尹艳莉,等.拟南芥[STBX]AtOFP8[STBZ]的生物信息学分析及表达分析[J].北方园艺,2018,42(18):35.[doi:10.11937/bfyy.20174346]
 TANG Yao,ZHANG Wei,YIN Yanli,et al.Bioinformatics Analysis and Expression Analysis of AtOFP8 in Arabidopsis thaliana[J].Northern Horticulture,2018,42(16):35.[doi:10.11937/bfyy.20174346]
[9]高润昕,黄凤珍,李萌,等.水势和盐胁迫对拟南芥种子萌发和根部生长的影响[J].北方园艺,2019,43(15):8.[doi:10.11937/bfyy.20184111]
 GAO Runxin,HUANG Fengzhen,LI Meng,et al.Effects of Water Potential and Salt Stress on Seed Germination and Root Growth in Arabidopsis[J].Northern Horticulture,2019,43(16):8.[doi:10.11937/bfyy.20184111]

备注/Memo

第一作者简介:邓竹英(1991-),女,博士研究生,研究方向为生物大分子长距离信号运输现象。E-mail:201572341@yangtzeu.edu.cn.责任作者:梁大成(1979-),男,博士,教授,现主要从事嫁接机理及生物大分子长距离信号运输现象等研究工作。E-mail:dachengliang@gmail.com.基金项目:国家自然科学基金资助项目(31671257)。收稿日期:2019-12-05

更新日期/Last Update: 2020-11-23