DENG Zhuying,LIANG Dacheng.Identification of Mobile mRNAs in Arabidopsis/Nicotiana benthamiana Hetero-grafts[J].Northern Horticulture,2020,44(16):22-28.[doi:10.11937/bfyy.20194602]
拟南芥/本生烟远缘嫁接体中移动性mRNA分子检测
- Title:
- Identification of Mobile mRNAs in Arabidopsis/Nicotiana benthamiana Hetero-grafts
- Keywords:
- Arabidopsis; Nicotiana benthamiana; hetero-grafting; RNA-Seq; mobile mRNA
- 文献标志码:
- A
- 摘要:
- 以拟南芥和本生烟草为试材,采用微嫁接技术和转录组测序的方法,研究了拟南芥/本生烟烟草远缘嫁接体中可移动的mRNA分子,以期进一步了解根茎间的信息交流机制。结果表明:在本生烟砧木中检测出824个向下移动的拟南芥mRNA分子,挑选其中30个高丰度的拟南芥mRNA靶分子进行RT-PCR扩增验证,未发现可以移动的mRNA分子。进一步验证其中psbW和[STBX]RBCS1A[STBZ]基因均未发生移动。利用克隆测序,检测出[STBX]AT1G26630(elF5A2[STBZ])的序列来自于本生烟草,而非接穗部分移动而来。深度测序得到的可移动mRNAs并未能够被RT-PCR技术所验证,上述结果表明mRNA可能并非担当根茎间长距离运输的角色。
- Abstract:
- Arabidopsis and Nicotiana benthamiana were used as materials,by deploying the micrografting technique and deep-sequencing platform,the possibility of potentially mobile mRNAs between Arabidopsis scion and Nicotiana rootstock were explored in order to understand the mechanisms of root/shoot communication.The results showed that 824 transcripts belonging to Arabidopsis were identified in the Nb rootstock about deep sequencing,suggesting that mRNA might move across the graft union.To further confirm the mobility of the identified Arabidopsis transcripts,RT-PCR analyses of 30 high-potential mobile transcripts together with previously identified psbW and RBCS1A transcripts were performed.The amplified PCR fragment for AT1G26630 (elF5A2) gene was further cloned and sequenced,and it was from Nicotiana benthamiana rather than from the scion.Mobile mRNA candidates identified with deep sequencing technique cannot be validated by RT-PCR,thereby presenting concerns about the role of mRNAs in acting as long-distance signaling between shoot and root as previously suggested.
参考文献/References:
[1]THIEME C J,ROJAS-TRIANA M,STECYK E,et al.Endogenous Arabidopsis messenger RNAs transported to distant tissues[J].Nature Plants,2015,1(4):15025.[2]SPIEGELMAN Z,GOLAN G,WOLF S.Don′t kill the messenger:Long-distance trafficking of mRNA molecules[J].Plant Science,2013,213:1-8.[3]BANERJEE A K,CHATTERJEE M,YU Y Y,et al.Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway[J].The Plant Cell,2006,18(12):3443-3457.[4]LOUGH T J,LUCAS W J.Integrative plant biology:Role of phloem long-distance macromolecular trafficking[J].Annual Review of Plant Biology,2006,57(1):203-232.[5]TURGEON R,WOLF S.Phloem transport:Cellular pathways and molecular trafficking[J].Annual Review of Plant Biology,2009,60(1):207-221.[6]ATKINS C A,SMITH P M C,RODRIGUEZ-MEDINA C.Macromolecules in phloem exudates:A review[J].Protoplasma,2011,248(1):165-172.[7]LIN M K,BELANGER H,LEE Y J,et al.Floweing locus T protein May act as the long-distance florigenic signal in the cucurbits[J].The Plant Cell,2007,19(5):1488-1506.[8]CORBESIER L,VINCENT C,JANG S,et al.FT protein movement contributes to long-distance signaling in floral induction of arabidopsis[J].Science,2007,316(5827):1030-1033.[9]HUEN A K,RODRIGUEZ-MEDINA C,HO A Y Y,et al.Long-distance movement of phosphate starvation-responsive microRNAs in Arabidopsis[J].Plant Biology,2017,19(4):643-649.[10]KHALDUN A B M,HUANG W J,LV H,et al.Comparative profiling of miRNAs and target gene identification in distant-grafting between tomato and Lycium(goji berry)[J].Frontiers in Plant Science,2016(7):1475.[11]PAGLIARANI C,VITALI M,FERRERO M,et al.The accumulation of miRNAs differentially modulated by drought stress is affected by grafting in grapevine[J].Plant Physiology,2017,173(4):2180-2195.[12]BROSNAN C A,VOINNET O.Cell-to-cell and long-distance siRNA movement in plants:Mechanisms and biological implications[J].Current Opinion in Plant Biology,2011,14(5):580-587.[13]LIANG D C,WHITE R G,WATERHOUSE P M.Gene silencing in Arabidopsis spreads from the root to the shoot,through a gating barrier,by template-dependent,nonvascular,cell-to-cell movement[J].Plant Physiology,2012,159(3):984-1000.[14]ZHANG W N,KOLLWIG G,STECYK E,et al.Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers[J].The Plant Journal,2014,80(1):106-121.[15]KIM G,LEBLANC M L,WAFULA E K,et al.Genomic-scale exchange of mRNA between a parasitic plant and its hosts[J].Science,2014,345(6198):808-811.[16]HUANG N C,YU T S.The sequences of Arabidopsis GA-insensitive RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking[J].The Plant Journal,2009,59(6):921-929.[17]HAYWOOD V,YU T S,HUANG N C,et al.Phloem long-distance trafficking of gibberellic acid insensitive RNA regulates leaf development[J].The Plant Journal,2005,42(1):49-68.[18]YANG H W,YU T S.Arabidopsis floral regulators FVE and AGL24 are phloem-mobile RNAs[J].Botanical Studies,2010,51(1):17-26.[19]YANG Y Z,MAO L Y,JITTAYASOTHORN Y,et al.Messenger RNA exchange between scions and rootstocks in grafted grapevines[J].BMC Plant Biology,2015,15:251.[20]XU H Y,ZHANG W N,LI M F,et al.Gibberellic acid insensitive mRNA transport in both directions between stock and scion in malus[J].Tree Genetics & Genomes,2010,6(6):1013-1019.[21]XU H Y,IWASHIRO R,LI T Z,et al.Long-distance transport of gibberellic acid insensitive mRNA in Nicotiana benthamiana[J].BMC Plant Biology,2013,13(1):165.[22]LEBLANC M,KIM G,PATEL B,et al.Quantification of tomato and Arabidopsis mobile RNAs trafficking into the parasitic plant Cuscuta pentagona[J].New Phytologist,2013,200(4):1225-1233.[23]HUANG N C,LUO K R,YU T S.Mobility of antiflorigen and PEBP mRNAs in Toma to-tobacco heterografts[J].Plant Physiology,2018,178(2):783-794.[24]XIA C,ZHENG Y,HUANG J,et al.Elucidation of the mechanisms of long-distance mRNA movement in a Nicotiana benthamiana/tomato heterograft system[J].Plant Physiology,2018,177(2):745-758.[25]NOTAGUCHI M,OKAMOTO S.Dynamics of long-distance signaling via plant vascular tissues[J].Frontiers in Plant Science,2015(6):161.[26]ZHANG Z L,ZHENG Y,HAM B K,et al.Vascular-mediated signalling involved in early phosphate stress response in plants[J].Nature Plants,2016,2(4):16033.[27]JAILANI A A K,SOLANKI V,ROY A,et al.A CGMMV genome-replicon vector with partial sequences of coat protein gene efficiently expresses GFP in Nicotiana benthamiana[J].Virus Research,2017,233:77-85.
相似文献/References:
[1]陈昱,官丽莉,杨晶,等.植物金属硫蛋白的研究进展[J].北方园艺,2014,38(07):185.
CHEN Yu,GUAN Li-li,YANG Jing,et al.Research Progress on Plant Metallothionein[J].Northern Horticulture,2014,38(16):185.
[2]郭涛1,2,晁跃辉,等.拟南芥NCED4基因的克隆及初步功能鉴定[J].北方园艺,2014,38(17):105.
GUO Tao,CHAO Yue-hui,et al.Cloning and Transformation of NCED4 Gene from Arabidopsis thaliana[J].Northern Horticulture,2014,38(16):105.
[3]王 崇,程玉祥.AtGDPD-Like 6和AtGDPD-Like 7基因启动子表达特性及AtGDPD-Like 6蛋白定位[J].北方园艺,2015,39(11):90.[doi:10.11937/bfyy.201511022]
WANG Chong,CHENG Yu-xiang.The Expression Patterns of Arabidopsis thaliana GDPDL6 and GDPDL7 and the Subcellular Localization of GDPDL6[J].Northern Horticulture,2015,39(16):90.[doi:10.11937/bfyy.201511022]
[4]杨淑萍,马伟琴,刘阳,等.模式生物拟南芥研究进展的文献计量分析[J].北方园艺,2015,39(19):195.[doi:10.11937/bfyy.201519049]
YANG Shuping,MA Weiqin,LIU Yang,et al.Bibliometric Analysis of Research Progress on Model Species Arabidopsis thaliana[J].Northern Horticulture,2015,39(16):195.[doi:10.11937/bfyy.201519049]
[5]周 索,杜 丽.四种生长素对拟南芥根生长发育的影响[J].北方园艺,2008,32(03):0.[doi:10.11937/bfyy.200803024]
ZHOU Suo,DU Li.Study on the Root Growth and Development of Arabidopsis thaliana[J].Northern Horticulture,2008,32(16):0.[doi:10.11937/bfyy.200803024]
[6]张亮,马灵玉,王太霞.低剂量60Co-γ辐照刺激拟南芥植株生长的效应[J].北方园艺,2016,40(23):28.[doi:10.11937/bfyy.201623007]
ZHANG Liang,MA Lingyu,WANG Taixia.Effect of Low-dose Gamma Irradiation on Growth and Development of Arabidopsis Plants[J].Northern Horticulture,2016,40(16):28.[doi:10.11937/bfyy.201623007]
[7]宿强,曾会明,许立新,等.紫花苜蓿MsSAG[STBX]113基因的克隆及对拟南芥的转化[J].北方园艺,2018,42(06):10.[doi:10.11937/bfyy.20172691]
XU Qiang,ZENG Huiming,XU Lixin,et al.Cloning of MsSAG113 Gene From Medicago sativa L. and Transformation of Arabidopsis thaliana[J].Northern Horticulture,2018,42(16):10.[doi:10.11937/bfyy.20172691]
[8]唐尧,张微,尹艳莉,等.拟南芥[STBX]AtOFP8[STBZ]的生物信息学分析及表达分析[J].北方园艺,2018,42(18):35.[doi:10.11937/bfyy.20174346]
TANG Yao,ZHANG Wei,YIN Yanli,et al.Bioinformatics Analysis and Expression Analysis of AtOFP8 in Arabidopsis thaliana[J].Northern Horticulture,2018,42(16):35.[doi:10.11937/bfyy.20174346]
[9]高润昕,黄凤珍,李萌,等.水势和盐胁迫对拟南芥种子萌发和根部生长的影响[J].北方园艺,2019,43(15):8.[doi:10.11937/bfyy.20184111]
GAO Runxin,HUANG Fengzhen,LI Meng,et al.Effects of Water Potential and Salt Stress on Seed Germination and Root Growth in Arabidopsis[J].Northern Horticulture,2019,43(16):8.[doi:10.11937/bfyy.20184111]
备注/Memo
第一作者简介:邓竹英(1991-),女,博士研究生,研究方向为生物大分子长距离信号运输现象。E-mail:201572341@yangtzeu.edu.cn.责任作者:梁大成(1979-),男,博士,教授,现主要从事嫁接机理及生物大分子长距离信号运输现象等研究工作。E-mail:dachengliang@gmail.com.基金项目:国家自然科学基金资助项目(31671257)。收稿日期:2019-12-05