ZENG Weijun,LIU Yan.Effects of AM Fungi and Exogenous Phosphorus on Photosynthetic Physiology of Camellia oleifera Seedlings Under Aluminum Stress[J].Northern Horticulture,2024,(14):34-43.[doi:10.11937/bfyy.20234469]
AM真菌和外源磷对铝胁迫下油茶幼苗光合生理的影响
- Title:
- Effects of AM Fungi and Exogenous Phosphorus on Photosynthetic Physiology of Camellia oleifera Seedlings Under Aluminum Stress
- 文章编号:
- 1001-0009(2024)14-0034-10
- Keywords:
- arbuscular mycorrhizal fungi; phosphate fertilizer; Camellia oleifera; aluminum stress; photosynthetic physiology
- 分类号:
- S 794.4
- 文献标志码:
- A
- 摘要:
- 以一年生普通油茶实生苗和4种AM真菌为试材,采用盆栽试验,在施用磷(0、30、60、120 mg·L-1)、铝(0、1、2、3 mmol·L-1)组合处理下培养8个月,研究了AM真菌和外源磷对铝胁迫下油茶幼苗光合生理的影响,以期为开展外源磷和丛枝菌根缓解铝胁迫的相关机理研究提供参考依据。结果表明:4种AM真菌中摩西斗管囊霉侵染率最高,接菌幼苗其净光合速率、气孔导度、蒸腾速率、叶绿体色素含量、类胡萝卜素及CO2利用效率较对照分别提高295.19%、381.48%、297.86%、57.63%、172.75%和142.00%;在铝胁迫下,接种摩西斗管囊霉能提高油茶幼苗光合生理响应的敏感性,其高浓度铝胁迫下的净光合速率、气孔导度、蒸腾速率、叶绿体色素含量、非光化学淬灭参数、非光化学淬灭的量子产量、根部干质量和地径较高;添加浓度120 mg·L-1以下的外源磷能缓解铝胁迫对摩西斗管囊霉菌根苗光合生理的影响,主要是通过显著提高其净光合速率和根部干质量。综上,土壤铝害抑制油茶的光合作用从而影响其生长发育,外源磷和丛枝菌根真菌对油茶光合生理的增效作用能有效缓解铝胁迫的影响。
- Abstract:
- The One-year-old common Camellia oleifera seedlings and four species of arbuscular mycorrhizal fungi (AMF) were used as experimental materials,the pot experiment was conducted.The seedlings were cultivated for 8 months under combinations of phosphorus (0,30,60,120 mg·L-1) and aluminum (0,1,2,3 mmol·L-1) treatments.The effects of AMF and exogenous phosphorus on the photosynthetic physiology of Camellia oleifera seedlings under aluminum stress were studied,in order to provide reference for further research on the mechanisms of exogenous phosphorus and arbuscular mycorrhizal fungi in alleviating aluminum stress.The results showed that among the four AMF species,Funneliformis mosseae had the highest infection rate.Inoculating seedlings with Funneliformis mosseae increased the net photosynthetic rate,stomatal conductance,transpiration rate,chlorophyll content,carotenoids,and CO2 utilization efficiency by 295.19%,381.48%,297.86%,57.63%,172.75% and 142.00%,respectively,compared to the control.Under aluminum stress,inoculation with Funneliformis mosseae increased the sensitivity of Camellia oleifera seedlings′ photosynthetic physiology response.The net photosynthetic rate,stomatal conductance,transpiration rate,chlorophyll content,non-photochemical quenching parameters,non-photochemical quenching quantum yield,root dry weight,and underground stem were higher under high aluminum stress.Exogenous phosphorus addition at concentrations below 120 mg·L-1 alleviated the effects of aluminum stress on Funneliformis mosseae mycorrhizal seedlings′ photosynthetic physiology,mainly by significantly increasing their net photosynthetic rate and root dry weight.In summary,soil aluminum toxicity inhibited the photosynthesis of Camellia oleifera,thereby affecting its growth and development. The synergistic effect of exogenous phosphorus and arbuscular mycorrhizal furgi formation effectively alleviated the impact of aluminum stress on Camellia oleiferaphotosynthetic physiology.
参考文献/References:
[1]何云,曾明.丛枝菌根真菌对植物耐铝性的影响[J].北方园艺,2015(13):181-185.[2]王艳阳,常顺利,王诗慧,等.铝胁迫及酸度对天山雪岭云杉菌根真菌生长的影响[J].新疆大学学报(自然科学版),2020,37(1):55-62.[3]MATSUMOTO H.Cell biology of aluminum toxicity and tolerance in higher plants[J].International Review of Cytology,2000,200:1-46.[4]MORITA A,YANAGISAWA O,MAEDA S,et al.Tea plant (Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum[J].Soil Science and Plant Nutrition,2011,57(6):796-802.[5]郭朋.柑橘耐铝的分子生理机制及硫对铝毒的缓解[D].福州:福建农林大学,2018.[6]王小平,刘鹏,罗虹,等.铝氟交互处理对茶树生理特性的影响[J].园艺学报,2009,36(9):1359-1364.[7]李晓林,冯固.丛枝菌根生态生理[M].北京:华文出版社,2001.[8]RUFYIKIRI G,DECLERCK S,DUFEY J E,et al.Arbuscular mycorrhizal fungi might alleviate aluminium toxicity in banana plants[J].New Phytologist,2000,148(2):343-352.[9]AGUILERA P,CUMMING J,OEHL F,et al.Diversity of arbuscular mycorrhizal fungi in acidic soils and their contribution to aluminum phytotoxicity alleviation[J].Springer International Publishing,2015,24:203-228.[10]侯文娟,胡厚臻,鲁莹莹,等.磷对铝胁迫下尾巨桉生长生理方面的缓解作用[J].东北林业大学学报,2016,44(5):5-9,19.[11]JIANG H X,TANG N,ZHENG J G,et al.Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings[J].Physiologia Plantarum,2009,137(3):298-311.[12]YANG L T,ZHOU Y F,WANG Y Y,et al.Phosphorus-mediated alleviation of aluminum toxicity revealed by the iTRAQ technique in Citrus grandis roots[J].PLoS One,2019,14(10):e0223516.[13]林宇岚,李正昀,张林平,等.有机磷和AM真菌对油茶生长、根系形态和光合作用的影响[J].经济林研究,2021,39(1):121-128,210.[14]HE X,SHAO C,WU A,et al.Arbuscular mycorrhizal fungi enhance nutrient acquisition and reduce aluminum toxicity in Lespedeza formosa under acid rain[J].Environmental Science and Pollution Research International,2022,29(20):29904-29916.[15]庄瑞林.中国油茶[M].2版.北京:中国林业出版社,2008.[16]黄丽媛.油茶对铝的吸收积累及其耐性机理研究[D].长沙:中南林业科技大学,2017.[17]PEUELAS J,FILELLA I.Visible and near-infrared reflectance techniques for diagnosing plant physiological status[J].Trends in Plant Science,1998,3(4):151-156.[18]何维明,马风云.水分梯度对沙地柏幼苗荧光特征和气体交换的影响[J].植物生态学报,2000,24(5):630-634.[19]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.[20]王幼珊,张淑彬,张美庆.中国丛枝菌根真菌资源与种质资源[M].北京:中国农业出版社,2012.[21]WU Q S,XIA R X,ZOU Y N.Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress[J].Journal of Plant Physiology,2006,163(11):1101-1110.[22]GMEZ-BELLOT M J,ORTUOM F,NORTES P A,et al.Mycorrhizal euonymus plants and reclaimed water:Biomass,water status and nutritional responses[J].Scientia Horticulturae,2015,186:61-69.[23]冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应[J].生态学报,2002,22(6):901-910.[24]翟中和,王喜忠,丁明孝.细胞生物学[M].4版.北京:高等教育出版社,2011.[25]单运峰,冯宗炜,陈楚莹.模拟酸雨对七种森林植物生物量的影响[J].生态学报,1989,9(3):274-276.[26]VON UEXKLL H R,MUTERT E.Global extent,development and economic impact of acid soils[J].Plant and Soil,1995,171:1-15.[27]HAMPP R S H.Effect of aluminium ions on 14 CO2-fixation and membrane system of isolated spinach chloroplasts[J].Zeitschrift Für Pflanzenphysiologie,1975,76:300-306.[28]刘森,李鹏,李春华,等.泡桐幼苗对铝胁迫的生理响应[J].中南林业科技大学学报,2020,40(6):44-52,62.[29]LI C,XU H,XU J,et al.Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant[J].Acta Physiologiae Plantarum,2011,33(3):973-978.[30]HAJIBOLAND R,BASTANI S,BAHRAMI-RAD S,et al.Interactions between aluminum and boron in tea (Camellia sinensis) plants[J].Acta Physiologiae Plantarum,2015,37(3):54.[31]张爽,廖红,王秀荣.不同丛枝菌根真菌对大豆耐酸、铝能力的影响[J].中国油料作物学报,2014,36(5):616-622.[32]MO X H,ZHANG M K,LIANG C Y,et al.Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes[J].Plant Physiology and Biochemistry,2019,139:697-706.[33]LIAO H,WAN H Y,SHAFF J,et al.Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance.Exudation of specific organic acids from different regions of the intact root system[J].Plant Physiology,2006,141:674-684.[34]于姣妲,夏丽丹,殷丹阳,等.磷素对杉木幼苗耐铝性的影响机制[J].林业科学,2018,54(5):36-47.[35]SUN Q B,SHEN R F,ZHAO X Q,et al.Phosphorus enhances Al resistance in Al-resistant Lespedeza bicolor but not in Al-sensitive L.cuneata under relatively high Al stress[J].Annals of Botany,2008,102(5):795-804.
相似文献/References:
[1]马 媛,吕 杰,刘晓颖.AM真菌多样性和生物学功能研究进展[J].北方园艺,2014,38(14):203.
MA Yuan,LV Jie,LIU Xiao-ying.Progress of Diversity and Biological Function of Arbuscular Mycorrhizal Fungi[J].Northern Horticulture,2014,38(14):203.
[2]韩亚楠,毕美光,刘润进,等.AM真菌对连作西瓜生长及其枯萎病的影响[J].北方园艺,2013,37(13):150.
HAN Ya-nan,BI Mei-guang,LIU Run-jin,et al.Effects of Arbuscular Mycorrhizal Fungus on Growth and Fusarium Wilt of Watermelon Seedlings in Continuous Cropping Soils[J].Northern Horticulture,2013,37(14):150.
[3]司鹏飞,詹德江,李广,等.设施条件下不同磷肥水平对茄子果实养分含量的影响[J].北方园艺,2012,36(03):151.
SI Peng-fei,ZHAN De-jiang,LI Guang,et al.Effects of Different Phosphate Levels on Nutrient Content of Eggplant Fruits in Greenhouse[J].Northern Horticulture,2012,36(14):151.
[4]张延旭,毕银丽,王瑾,等.采煤沉陷地丛枝菌根的应用及其生态效应研究[J].北方园艺,2014,38(21):161.
ZHANG Yan-xu,BI Yin-li,WANG Jin,et al.Application of Arbuscular Mycorrhizal Fungi and Its Ecological Effect in Coal Mining Subsidence Area[J].Northern Horticulture,2014,38(14):161.
[5]韩浩章,王晓立,田福发,等.从枝菌根真菌对弱光条件下黄瓜幼苗生长发育及其光合特性的影响[J].北方园艺,2013,37(24):28.
HAN Hao-zhang,WANG Xiao-li,TIAN Fu-fa,et al.Effects of Arbuscular Mycorrhizal Fungi on Growth and Photosynthetic Characteristics of Cucumber Seedlings Under Low Light Conditions[J].Northern Horticulture,2013,37(14):28.
[6]卢彦琦,常社霞,邢红霞,等.矿区植物与丛枝菌根真菌共生效应[J].北方园艺,2015,39(05):78.[doi:10.11937/bfyy.201505025]
LU Yan-qi,CHANG She-xia,XING Hong-xia,et al.Symbiosis Effect of Arbuscular Mycorrhizal Fungi on Plants in Coal Mine Areas[J].Northern Horticulture,2015,39(14):78.[doi:10.11937/bfyy.201505025]
[7]张淑彬,刘建斌,王幼珊.丛枝菌根真菌对辣椒疫霉病害防治的初步研究[J].北方园艺,2015,39(05):125.[doi:10.11937/bfyy.201505036]
ZHANG Shu-bin,LIU Jian-bin,WANG You-shan.Study on the Resistance of Arbuscular Mycorrhizal Fungi to Phytophthora capsici of Pepper[J].Northern Horticulture,2015,39(14):125.[doi:10.11937/bfyy.201505036]
[8]岳辉,刘英.丛枝菌根真菌菌剂制备研究进展[J].北方园艺,2015,39(16):179.[doi:10.11937/bfyy.201516043]
arbuscular mycorrhizal fungi,inoculant,research progress.Research Progress on Preparation of Arbuscular Mycorrhizal Fungi Inoculant[J].Northern Horticulture,2015,39(14):179.[doi:10.11937/bfyy.201516043]
[9]柳 威,吴 强 盛,翟 华 芬,等.丛枝菌根真菌与土壤盐碱植物的关系[J].北方园艺,2010,34(02):0.[doi:10.11937/bfyy.201002086]
LIU Wei,WU Qiang -sheng,ZHAI Hua-fen,et al.Relation Between Arbuscular Mycorrhizal Fungi and Soil Salinization Plant[J].Northern Horticulture,2010,34(14):0.[doi:10.11937/bfyy.201002086]
[10]魏书琴,宋宇鹏,张焕柱,等.不同磷肥施用量对紫菀产量及有效成分含量的影响[J].北方园艺,2015,39(23):153.[doi:10.11937/bfyy.201523043]
WEI Shuqin,SONG Yupeng,ZHANG Huanzhu,et al.Effect of Different Amount of Phosphate Fertilizer on Aster tataricus Yield and Content of Effective Component[J].Northern Horticulture,2015,39(14):153.[doi:10.11937/bfyy.201523043]
备注/Memo
第一作者简介:曾维军(1994-),男,硕士,助理研究员,现主要从事应用微生物等研究工作。E-mail:478353921@qq.com.责任作者:刘燕(1981-),女,博士,副研究员,现主要从事贵州特色植物繁育与土壤有益微生物等研究工作。E-mail:472395057@qq.com.基金项目:贵州省林业科研资助项目(黔林科合[2022]05号);贵州科学院博士基金资助项目(黔科院R字[2021]2号);贵州省科技计划资助项目(黔科合支撑[2020]1Y060号)。收稿日期:2023-12-22