CHEN Yu,XING Wenting,ZHANG Tingting,et al.Cloning and Expression Analysis of DcNAC48 Gene of Dendrobium catenatum Lindl.[J].Northern Horticulture,2023,(10):93-100.[doi:10.11937/bfyy.20222910]
铁皮石斛DcNAC48基因的克隆及表达分析
- Title:
- Cloning and Expression Analysis of DcNAC48 Gene of Dendrobium catenatum Lindl.
- Keywords:
- Dendrobium catenatum Lindl.; NAC; abiotic stress; gene expression
- 文献标志码:
- A
- 摘要:
- 以铁皮石斛(Dendrobium catenatum Lindl.)为试材,采用PCR技术从中克隆一个NAC(NAM,ATAF1/2,CUC2)转录因子基因DcNAC48,利用生物信息学技术分析该基因的特征结构,采用荧光定量PCR方法研究了该基因在不同组织部位和不同胁迫下的表达模式,以期为进一步研究该基因功能奠定基础,为提高铁皮石斛抗逆性提供基因资源。结果表明:DcNAC48基因全长909 bp,编码302个氨基酸,具有NAC保守结构域,在其基因启动子区存在多种激素响应元件、逆境响应元件、生长发育响应元件以及光响应元件。不同组织部位表达分析表明DcNAC48具有组织表达特异性,在合蕊柱中表达量最高。不同胁迫处理下的基因表达模式表明DcNAC48受低温胁迫、盐胁迫、干旱胁迫和高温胁迫的诱导而上调表达,推测该基因可能参与铁皮石斛对非生物胁迫的响应。
- Abstract:
- A NAC (NAM,ATAF1/2,CUC2) transcription factor gene DcNAC48 was cloned by PCR from Dendrobium catenatum Lindl..The characteristic structures of the gene were analyzed by bioinformatics and the expression patterns in different tissues and under different stresses were studied by quantitative real-time PCR (qRT-PCR),in order to lay a foundation for further study of the function of DcNAC48 and provide gene resources for improving the stress resistance of D.catenatum.The results showed that the total length of DcNAC48 gene was 909 bp,encoding 302 amino acids,and had a conserved NAC domain.There were various hormone responsive elements,stress responsive elements,growth and development responsive elements and light responsive elements in the gene promoter region.The expression patterns analysis showed that DcNAC48 had tissue specificity,and its expression level was the highest in the gynostemium.The gene expression patterns under different stress treatments indicated that DcNAC48 was upregulated by low temperature,salt stress,drought stress and high temperature stress,suggesting that DcNAC48 might be involved in the response of D.catenatum Lindl.to abiotic stress.
参考文献/References:
[1]ZHU J K.Abiotic stress signaling and responses in plants[J].Cell,2016,67(2):313-324.[2]RABARA R C,TRIPATHI P,RUSHTON P J.The potential of transcription factor-based genetic engineering in improving crop tolerance to drought[J].OMICS:A Journal of Integrative Biology,2014,18(10):601-614.[3]AIDA M,ISHIDA T,FUKAKI H,et al.Genes involved in organ separation in Arabidopsis:Analysis of the cup-shaped cotyledon mutant[J].Plant Cell,1997(9):841-857.[4]ZHU G,CHEN G,ZHU J,et al.Molecular characterization and expression profiling of NAC transcription factors in Brachypodium distachyon L[J].PLoS One,2015,10(10):e0139794.[5]NURUZZAMAN M,MANIMEKALAI R,SHARONI A M,et al.Genome-wide analysis of NAC transcription factor family in rice[J].Gene,2010,465(1/2):30-44.[6]TRISHLA V S,MARRIBOINA S,BOYIDI P,et al.GUS-reporter based analysis of the promoter activity of Gossypium hirsutum NAC transcription factor,GhNAC4 that is induced by phytohormones and environmental stresses[J].Plant Cell Tiss Org Cult,2020,141:643-654.[7]HAO Y J,WEI W,SONG Q X,et al.Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J].Plant J,2011,68:302-313.[8]YARRA R,WEI W.The NAC-type transcription factor GmNAC20 improves cold,salinity tolerance,and lateral root formation in transgenic rice plants[J].Funct Integr Genomics,2021,21(3/4):473-487.[9]TRISHLA V S,KIRTI P B.Structure-function relationship of Gossypium hirsutum NAC transcription factor,GhNAC4 with regard to ABA and abiotic stress responses[J].Plant Sci,2021,302:110718.[10]刘雪娜,吴雪娇,刘顺航,等.铁皮石斛的药理作用及其保健食品研发进展[J].保鲜与加工,2021,21(10):144-150.[11]司灿.铁皮石斛对干旱胁迫的生理响应及DNA甲基化研究[D].厦门:华侨大学,2016.[12]NAGAHAGE I S P,SAKAMOTO S,NAGANO M,et al.An Arabidopsis NAC domain transcription factor,ATAF2,promotes age-dependent and dark-induced leaf senescence[J].Physiol Plant,2020,70(2):299-308.[13]REN Y,HUANG Z,JIANG H,et al.A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling[J].J Exp Bot,2021,72(8):2947-2964.[14]LI M,CHEN R,JIANG Q,et al.GmNAC06,a NAC domain transcription factor enhances salt stress tolerance in soybean[J].Plant Mol Biol,2021,105(3):333-345.[15]CHEN C J,CHEN H,ZHANG Y,et al.TBtools-an integrative toolkit developed for interactive analyses of big biological data[J].Mol Plant,2020,13(8):1194-1202.[16]张婷婷,李雨欣,张德遥,等.铁皮石斛蛋白磷酸酶PP2C家族基因鉴定及其表达分析[J].园艺学报,2021,48(12):2458-2470.[17]付亚娟,陈霞婷,乔洁,等.铁皮石斛亲环蛋白基因DoCyP的克隆及表达分析[J].园艺学报,2020,47(3):581-589.[18]OOKA H,SATOH K,DOI K,et al.Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J].DNA Res,2003,10(6):239-247.[19]NIE G,YANG Z,HE J,et al.Genome-wide investigation of the NAC transcription factor family in Miscanthus sinensis and expression analysis under various abiotic stress[J].Front Plant Sci,2021(12):766550.[20]LI L,HE Y,ZHANG Z,et al.OsNAC109 regulates senescence,growth and development by altering the expression of senescence-and phytohormone-associated genes in rice[J].Plant Mol Biol,2021,105(6):637-654.[21]DUAN M,ZHANG R,ZHU F,et al.A lipid-anchored NAC transcription factor is translocated into the nucleus and activates Glyoxalase I expression during drought stress[J].Plant Cell,2017,29(7):1748-1772.[22]WANG L,LI Z,LU M,et al.ThNAC13,a NAC transcription factor from Tamarix hispida,confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis[J].Front Plant Sci,2017(8):635.[23]KOU X,ZHOU J,WU C E,et al.The interplay between ABA/ethylene and NAC TFs in tomato fruit ripening:A review[J].Plant Mol Biol,2021,106(3):223-238.[24]AN J P,LI R,QU F J,et al.An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway[J].J Plant Physiol,2018,221:74-80.[25]SHAN W,KUANG J F,LU W J,et al.Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1[J].Plant Cell Environ,2014,37(9):2116-2127.[26]LI X L,YANG X,HU Y X,et al.A novel NAC transcription factor from Suaeda liaotungensis K.enhanced transgenic Arabidopsis drought,salt,and cold stress tolerance[J].Plant Cell Rep,2014,33(5):767-778.[27]LE HNANFF G,PROFIZI C,COURTEAUX B,et al.Grapevine NAC1 transcription factor as a convergent node in developmental processes,abiotic stresses,and necrotrophic/biotrophic pathogen tolerance[J].J Exp Bot,2013,64(16):4877-4893.[28]TAKASAKI H,MARUYAMA K,KIDOKORO S,et al.The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice[J].Mol Genet Genomics,2010,284(3):173-183.
相似文献/References:
[1]黄作喜,张 杨,颜小玉,等.铁皮石斛原球茎高效增殖体系的构建[J].北方园艺,2014,38(14):107.
HUANG Zuo-xi,ZHANG Yang,YAN Xiao-yu,et al.Establishment for a Highly Efficient Proliferation System of Protocorm of Dendrobium officinale Kimura et Migo[J].Northern Horticulture,2014,38(10):107.
[2]潘梅,王景飞,姜殿强,等.铁皮石斛丛生芽增殖培养条件的优化[J].北方园艺,2013,37(13):128.
PAN Mei,WANG Jing-fei,JIANG Dian-qiang,et al.Clustered Buds Proliferation Optimization of Culture Conditions of Dendrobium candidum[J].Northern Horticulture,2013,37(10):128.
[3]龚庆芳,赵 健,何金祥,等.遮荫对一年生铁皮石斛生长特性、光合特性及多糖含量的影响[J].北方园艺,2014,38(01):148.
GONG Qing-fang,ZHAO Jian,HE Jin-xiang,et al.Effects of Shade Treatment on the Growth and Photosynthetic Characteristics and Polysaccharides Content of Annual Dendrobium officinale [J].Northern Horticulture,2014,38(10):148.
[4]梁淑颖,曾令杰.组培条件下铁皮石斛幼芽分蘖和生根的影响因素研究[J].北方园艺,2013,37(14):112.
LIANG Shu-ying,ZENG Ling-jie.Study on the Factors Affecting Tillering and Rooting of Buldet of Dendrobium officinale Kimura et Migo in Culture Medium[J].Northern Horticulture,2013,37(10):112.
[5]唐政,陈小香,黄献珠.混合酶提法提取铁皮石斛中石斛多糖的优化工艺研究[J].北方园艺,2014,38(06):132.
TANG Zheng,CHEN Xiao-xiang,HUANG Xian-zhu.Optimization of the Extraction Technology of Dendrobium Polysaccharides From Dendrobium officinale by Mixed Enzyme[J].Northern Horticulture,2014,38(10):132.
[6]练华山,杨贵先,李焕秀.不同氮源对铁皮石斛原球茎液体悬浮培养的影响[J].北方园艺,2014,38(07):152.
LIAN Hua-shan,YANG Gui-xian,LI Huan-xiu.Effect of Different Nitrogen Sources on Dendrobium candicum Wall.ex Lindl Suspension Cultures[J].Northern Horticulture,2014,38(10):152.
[7]李国树,徐成东,尚正丽,等.五种果蔬提取物对铁皮石斛茎叶分化苗促根效果的影响[J].北方园艺,2013,37(06):161.
LI Guo-shu,XU Cheng-dong,SHANG Zheng-li,et al.Effect of Five Kinds of Fruit and Vegetable Extracts on the Root-inducing Effect of Seedlings Differentiated from Dendrobium officinale Stem[J].Northern Horticulture,2013,37(10):161.
[8]张宇斌,郭菊,罗天霞,等.不同温度和湿度条件下光照强度对铁皮石斛光合速率的影响[J].北方园艺,2013,37(08):119.
ZHANG Yu-bin,GUO Ju,LUO Tian-xia,et al.Effect of Illumination Intensity Under Different Temperature and Humidity Conditions on Photosynthetic Rate of Dendrobium candidum[J].Northern Horticulture,2013,37(10):119.
[9]龚庆芳,周浩,王新桂,等.不同产地铁皮石斛的品质比较研究[J].北方园艺,2013,37(08):162.
GONG Qing-fang,ZHOU Hao,WANG Xin-gui,et al.Comparative Study on Quality of Dendrobium officinale from Different Habits[J].Northern Horticulture,2013,37(10):162.
[10]卢艳艳.铁皮石斛栽植技术研究[J].北方园艺,2013,37(20):137.
LU Yan-yan.Study on the Planting Technology of Dendrobium candidum[J].Northern Horticulture,2013,37(10):137.
备注/Memo
第一作者简介:陈彧(1984-),男,硕士,高级工程师,现主要从事珍贵树种培育及兰花育种等研究工作。E-mail:cfstuchen@126.com.责任作者:周扬(1988-),男,博士,副教授,现主要从事植物抗逆分子生物学等研究工作。E-mail:zhouyang@hainanu.edu.cn.基金项目:海南省自然科学基金资助项目(320QN368,319MS009);海南省耐盐作物生物技术重点实验室资助项目(2021)(HD-SYSZX-202107);海南大学科研启动资助项目(KYQD(ZR)1845)。收稿日期:2022-07-15