|Table of Contents|

Response of Photosynthetic Characteristics of Astragalus mongholicus Bunge to Different Fertilization (Organic) Levels

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年10
Page:
89-94
Research Field:
Publishing date:

Info

Title:
Response of Photosynthetic Characteristics of Astragalus mongholicus Bunge to Different Fertilization (Organic) Levels
Author(s):
HE XuelingWEI QinfangZHANG Xiaolan
(Commercial Crop Technology Extension Station of Dingxi,Dingxi,Gansu 743000)
Keywords:
Astragalus mongholicus Bungeorganic fertilizerphotosynthetic characteristicslight responseenvironmental factors
PACS:
-
DOI:
10.11937/bfyy.20214302
Abstract:
One-year-old Astragalus mongholicus Bunge was used as experimental material,five fertilization levels (0,500,1 000,1 500 and 2 000 kg per 667 m2) were set.The effects of different fertilization rates on net photosynthetic rate (Pn),stomatal conductance (Gs),transpiration rate (Tr),intercellular CO2 concentration (Ci),maximum net photosynthetic rate (Pnmax),light compensation point (LCP),light saturation point (LSP) and dark respiration rate (Rd) of Astragalus mongholicus Bunge were studied,in order to provide reference for the fertilization of light and characteristics of Astragalus mongholicus Bunge.The results showed that,1) Proper application of organic fertilizer increased Pn,Pnmax,Rd,LCP,Tr and Gs of Astragalus mongholicus Bunge and decreased Ci,but had no obvious effect on LSP.2) the maximum Pn,the maximum Pnmax,the maximum Tr,Gs and Rd,and the minimum Ci were observed when the fertilization application of 667 m2 was 1 500 kg,1 500-2 000 kg,1 000-1 500 kg,and 2 000 kg,respectively.However,the optimal fertilization rate of LCP and LSP varied greatly with different months.Therefore,the timing capacity of 1 500-2 000 kg organic fertilizer per 667 m2 of cultivated Astragalus mongholicus Bunge in this area was the best.

References:

[1]BLAIN C O,SHEARS N T.Seasonal and spatial variation in photosynthetic response of the kelp ecklonia radiata across a turbidity gradient[J].Photosynthesis Research,2019,140:21-38.[2]WANG X L,ZHANG Z Y,XU X M,et al.The density of barnyard grass affects photosynthesis and physiological characteristics of rice[J].Photosynthetica,2019,57(2):705-711.[3]YASUAKI A,TOMOMI I,HAJIME T,et al.Photosynthesis,respiration,and growth patterns of Rhizophora stylosa seedlings in relation to growth temperature[J].Trees,2019(33):1041-1049.[4]BORRAS L,CURA J A,OTEGUI M,et al.Maize kernel composition and post-flowering source-sink ratio[J].Crop Science,2002,42(3):781-790.[5]SAEED R,HAMZEH A,AHMAD I.Evaluation of photosynthesis,physiological,and biochemical responses of chickpea (Cicer arietinum L.cv.Pirouz) under water deficit stress and use of vermicompost fertilizer[J].Journal of Integrative Agriculture,2018,17(11):2426-2437.[6]OROTAEVA N E,IVANOVA M V,SUVOROVA G G,et al.The impact of the environmental factors on the photosynthetic activity of common pine (Pinus sylvestris) in spring and in autumn in the region of eastern Siberia[J].Journal of Forestry Research,2018,29(6):1465-1473.[7]SHUKRI F,SALI A,IMER R,et al.Variation of physiological growth indices,biomass and dry matter yield in some maize hybrids[J].Journal of Agriculture Science,2014,13(25):69-73.[8]GODFRAY H,BEDDINGTON J,CRUTE I,et al.Food security:The challenge of feeding 9 billion people[J].Science,2010,327(5967):812-818.[9]匡可任,路安民.中国植物志[M].北京:科学出版社,1978.[10]吴红伟,李东辉,边甜甜,等.基于响应面法结合熵权法多指标优选黄芪药材产地加工炮制一体化工艺[J].中草药,2021,52(19):5854-5861.[11]李艳玲,丁煌,杨芙蓉,等.黄芪甲苷配伍三七总皂苷对脑缺血大鼠BMSCs移植后血管新生的影响[J].中国实验方剂学杂志,2021,27(21):73-79.[12]王国宏,贾璐,王世伟,等.黄芪建中汤在大鼠胆汁中代谢产物的鉴定[J].中草药,2021,52(19):5827-5835.[13]马琳,陈昌婕,苗玉焕,等.基于蕲艾产量和品质的氮肥适宜施用量研究[J].植物营养与肥料学报,2021,27(9):1665-1674.[14]马兴东,郭晔红,杜弢,等.干旱区栽培黑果枸杞光合特性和产量对施氮的响应[J].西北农业学报,2020,29(11):1686-1694[15]张倩,刘根红,杨世花,等.不同施氮量与施氮深度对枸杞保护酶活性的影响[J].北方园艺,2021(18):119-125.[16]马兴东,郭晔红,李梅英,等.施氮对干旱区黑果枸杞光合-CO2响应及药效成分的影响[J].西北植物学报,2020,40(7):1209-1218.[17]杨威,狄彩霞,李季,等.我国有机肥原料及商品有机肥中四环素类抗生素的检出率及含量[J].植物营养与肥料学报,2021,27(9):1487-1495.[18]陈检锋,梁海,王伟,等.玉米-绿肥轮作体系下光叶紫花苕的氮肥替代和土壤肥力提升效应[J].植物营养与肥料学报,2021,27(9):1571-1580.[19]VALLE R,MISHOE J W,CAMPBELL W J,et al.Photosynthetic responses of ‘Bragg’ soybean leaves adapted to different CO2 environments[J].Crop Science,1985,25(2):333.[20]李理渊,李俊,同小娟等不同光环境下栓皮栎和刺槐叶片光合光响应模拟[J].应用生态学报,2018,29(7):2295-2306.[21]任博,李俊,同小娟,等.太行山南麓栓皮栎和刺槐叶片光合光响应模拟[J].生态学杂志,2017,36(8):2206-2216.[22]YE Z P.A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J].Photosynthetica,2007,45(4):637-640.[23]叶子飘,胡文海,肖宜安,等.光合电子流对光响应的机理模型及其应用[J].植物生态学报,2014,38(11):1241-1249.[24]刘杨杨,李俊,于强,等.甘蔗叶片光合CO2响应参数分析及其品种间差异[J].中国农业气象,2019,40(10):637-646.[25]叶子飘,段世华,安婷,等.C4作物电子传递速率对CO2响应模型的构建及应用[J].植物生态学报,2018,42(10):1000-1008.[26]任博,李俊,同小娟,等.太行山南麓栓皮栎和刺槐光合作用-CO2响应模拟[J].应用生态学报,2018,29(1):1-10.[27]BEMACCHI C J,MORGAN P B,ORT D R,et al.The growth of soybean under free air [CO2] enrichment(FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity[J].Planta,2005,220:434-446.[28]OABOME C P,WYTHE E J,IBRAHIM D G,et al.Low temperature effects on leaf physiology and survivorship in the C3 and C4 subspecies of Alloteropsis semialata[J].Journal of Experimental Botany,2008,59:1743-1754.[29]马兴东,郭晔红,王爱敏,等.干旱区黑果枸杞光合电子传递速率对施氮的响应[J].干旱区资源与环境,2021,35(5):130-136.

Memo

Memo:
-
Last Update: 2022-07-04