QIU Yanqiu,CHEN Jiaying,YANG Linli,et al.Transcriptome Analysis of Chrysanthemum morifolium Under Drought Stress[J].Northern Horticulture,2025,(3):9-17.[doi:10.11937/bfyy.20242097]
干旱胁迫下药菊转录组分析
- Title:
- Transcriptome Analysis of Chrysanthemum morifolium Under Drought Stress
- 文章编号:
- 1001-0009(2025)03-0009-09
- Keywords:
- Chrysanthemum morifolium (Ramat); drought stress; transcriptome; differentially expressed genes; metabolic pathways
- 分类号:
- S 682.1+1
- 文献标志码:
- A
- 摘要:
- 以“亳菊”和“杭菊”为试材,采用高通量转录组测序方法,研究了干旱胁迫下盛花期“亳菊”和“杭菊”差异表达基因变化和代谢通路变化情况,以期为明确药菊应对干旱胁迫的分子机制提供参考依据。结果表明:差异表达基因(differentially expressed genes)筛选结果发现,干旱胁迫下“亳菊”和“杭菊”分别筛选出28 145、4 831个DEGs,“亳菊”富集到的DEGs数目更多。KEGG代谢途径富集分析发现,干旱胁迫下“亳菊”中的DEGs主要富集在氧化磷酸化、氨基酸和核苷酸糖代谢、半乳糖代谢、半胱氨酸和甲硫氨酸代谢、苯丙烷类生物合成、二苯乙烯、二芳基庚烷和姜酚的生物合成、类黄酮生物合成等,“杭菊”的DEGs主要富集在光合作用-触角蛋白、丙氨酸、天冬氨酸和谷氨酸代谢、苯丙烷类生物合成、二苯乙烯、二芳基庚烷和姜酚的生物合成、类黄酮生物合成。通过转录组测序,初步筛选了“亳菊”和“杭菊”干旱处理后的差异表达基因,揭示了“亳菊”主要通过增强能量代谢、氨基酸代谢、次生代谢来响应干旱胁迫,“杭菊”主要通过增强碳水化合物代谢、氨基酸代谢、次生代谢、光合作用来响应干旱。
- Abstract:
- Taking C.morifolium ‘Boju’ and C.morifolium ‘Hangju’ as the test materials,the changes of differentially expressed genes and metabolic pathways in C.morifolium ‘Boju’ and C.morifolium ‘Hangju’ during the blooming period under drought stress were investigated by using high-throughput transcriptome sequencing,in order to provide a reference for clarifying the molecular mechanisms of C.morifolium in response to drought stress.The results showed that 28 145 and 4 831 DEGs were identified in C.morifolium ‘Boju’ and C.morifolium ‘Hangju’,respectively,under drought stress,with more DEGs enriched in C.morifolium ‘Boju’.The KEGG metabolic pathway enrichment analysis revealed that the DEGs in C.morifolium ‘Boju’ were mainly enriched in the areas of oxidative phosphorylation,amino acid and nucleotide sugar metabolism,galactose metabolism,cysteine and methionine metabolism,phenylpropanoid biosynthesis,stilbenoid,diarylheptanoid and gingerol biosynthesisand flavonoid biosynthesis,etc.,whereas in C.morifolium ‘Hangju’,DEGs were mainly concentrated in photosynthesis-antenna proteins,alanine,aspartate and glutamate metabolism,phenylpropanoid biosynthesis,stilbenoid,diarylheptanoid and gingerol biosynthesisand flavonoid biosynthesis,etc.Preliminary screening of differentially expressed genes after drought treatment in C.morifolium ‘Boju’ and C.morifolium‘Hangju’ by transcriptome sequencing revealed that C.morifolium ‘Boju’ responded to drought stress mainly by enhancing energy metabolism,amino acid metabolism,and secondary metabolism,while C.morifolium ‘Hangju’ responded to drought mainly by enhancing carbohydrate metabolism,amino acid metabolism,secondary metabolism,and photosynthesis.
参考文献/References:
[1]毛佳昊,熊晓辉,卢一辰.茉莉酸调控植物应对逆境胁迫作用的研究进展[J].生物加工过程,2021,19(4):413-419,462.[2]管晓丹,马洁茹,黄建平,等.海洋对干旱半干旱区气候变化的影响[J].中国科学:地球科学,2019,49(6):895-912.[3]WANG W N,MIN Z,WU J R,et al.Physiological and transcriptomic analysis of Cabernet Sauvginon (Vitis vinifera L.) reveals the alleviating effect of exogenous strigolactones on the response of grapevine to drought stress[J].Plant Physiology and Biochemistry,2021,167:400-409.[4]于玲,党佳旗,程美意,等.菊花应用价值调查研究[J].现代园艺,2022(13):21-23.[5]段利萍.外源褪黑素对茶菊干旱胁迫伤害的缓解作用及生理机制[D].泰安:山东农业大学,2019.[6]叶梦倩,邓静,彭杰,等.菊花本草考证[J].中成药,2022,44(6):1912-1917.[7]康四和,聂晶,陈科力,等.药用菊花植物形态特征比较及质量评价[J].中药材,2022,45(1):49-57.[8]张红瑞,黄勇,周艳,等.河南6个栽培类型药菊内在质量的研究[J].中药材,2017,40(7):1507-1510.[9]张红瑞,周艳,黄勇,等.采收时间对6个栽培类型药菊产量品质的影响[J].山东农业科学,2016,48(7):82-85.[10]张红瑞,李贺敏,张燕,等.河南引种杭白菊主要有效成分的比较[J].信阳农林学院学报,2016,26(3):89-91,98.[11]张红瑞,李炯,于红卫,等.河南引种药菊生态适应性研究[J].河南农业,2017(34):13-14.[12]孟盼盼,何海燕,曹钰昕,等.5个栽培类型药菊分枝期抗旱性综合评价[J].中国农业科技导报,2024,26(2):90-99.[13]张丽欣.药菊抗旱鉴定指标筛选及抗旱性评价[D].河南农业大学,2023.[14]杨小英,黄艳竹,郝春磊,等.干旱胁迫对彩菊切花幼苗根系构型和生理活性的影响[J].北方园艺,2024(2):47-54.[15]刘琳烁,陈宏宇,王国宝,等.基于转录组鉴定吊石苣苔干旱响应基因[J].贵州中医药大学学报,2024,46(1):31-38.[16]李晓艳,周敬雯,严铸云,等.基于转录组测序揭示适度干旱胁迫对丹参基因表达的调控[J].中草药,2020,51(6):1600-1608.[17]郭素平,袁燕,米马玉珍,等.干旱胁迫下登木油菜转录组分析[J].分子植物育种,2024,22(1):25-33.[18]赵文君,张赛,孙成振,等.北苍术对持续干旱的生理和转录组响应分析[J].核农学报,2024,38(1):46-56.[19]许小涵,唐志强,刘谦,等.干旱胁迫下忍冬全基因组DNA甲基化和转录组分析[J].中草药,2023,54(16):5339-5349.[20]祁伟亮,任迎虹,杨财容,等.干旱胁迫下桑树活性氧信号传导及转录组分析[J].干旱地区农业研究,2023,41(2):50-60.[21]李硕,李培英,孙宗玖,等.敏旱和抗旱狗牙根叶片对干旱胁迫的转录组响应差异分析[J].草地学报,2023,31(11):3322-3333.[22]BUCHNER P,BORISJUK L,WOBUS U.Glucan phosphorylases in Vicia faba L.:Cloning,structural analysis and expression patterns of cytosolic and plastidic forms in relation to starch[J].Planta,1996,199(1):64-73.[23]张华.AM真菌对小叶锦鸡儿和蒙古扁桃生长、抗旱性及总黄酮含量的影响[D].呼和浩特:内蒙古大学,2013.[24]ZHANG K,CUI H,CAO S,et al.Overexpression of CrCOMT from Carexrigescens increases salt stress and modulates melatonin synthesis in Arabidopsis thaliana[J].Plant Cell Reports,2019,38(12):1501-1514.[25]王爱华,马红叶,罗克明,等.火龙果响应PEG模拟干旱胁迫的转录组分析[J].果树学报,2022,39(7):1167-1182.[26]张保才,周奕华.植物细胞壁形成机制的新进展[J].中国科学:生命科学,2015,45(6):544-556.[27]BURTON R A,GIDLEY M J,FINCHER G B.Heterogeneity in the chemistry,structure and function of plant cell walls[J].Nature Chemical Biology,2010,6(10):724-732.[28]胡玉锋,金峰学,程云清,等.干旱胁迫下玉米苗期的转录组分析[J].东北农业科学,2022,47(6):48-52.
相似文献/References:
[1]方 晶.高压电场对干旱胁迫下黄瓜种子萌发的影响[J].北方园艺,2014,38(13):41.
FANG Jing.Effect of High Voltage Electric Field on Germination of Cucumber Seeds Under Drought Stress[J].Northern Horticulture,2014,38(3):41.
[2]王贵平,王金政,薛晓敏,等.叶面喷施甜菜碱对干旱胁迫下苹果幼树[J].北方园艺,2014,38(12):10.
WANG Gui-ping,WANG Jin-zheng,XUE Xiao-min,et al.Effect of Spraying Glycinebetaine on Physiological Responses of Apple Young Trees Under Drought Stress[J].Northern Horticulture,2014,38(3):10.
[3]张 爽,赵 纯,董 然,等.槭叶草对PEG-6000模拟干旱胁迫的生理响应[J].北方园艺,2013,37(22):74.
ZHANG Shuang,ZHAO Chun,DONG Ran,et al.Physiological Responses of Mukdenia rossii Under PEG-6000 Drought Stress[J].Northern Horticulture,2013,37(3):74.
[4]蔡喜悦,陈晓德,刘成,等.外源钙对干旱胁迫下复羽叶栾树幼苗水分及光合特性的影响[J].北方园艺,2013,37(10):58.
CAI Xi-yue,CHEN Xiao-de,LIU Cheng,et al.Effect of Drought Stress with Exogenous Ca2+on Relative Water Content and the Characteristics of Photosynthesis of Koelreuteria paniculata[J].Northern Horticulture,2013,37(3):58.
[5]梁蕊芳,康利平,徐 龙,等.干旱胁迫对樱桃番茄幼苗叶片生长特性的影响[J].北方园艺,2013,37(23):12.
LIANG Rui-fang,KANG Li-ping,XU Long,et al.Effect of Drought Stress on Growth Characteristics of Leaves in Lycopersicom esculentum var. cerasiforme Seedlings[J].Northern Horticulture,2013,37(3):12.
[6]王少平,黄超.切花菊‘黄中黄’对干旱胁迫的生理响应[J].北方园艺,2013,37(15):64.
WANG Shao-ping,HUANG Chao.Physiological Response of Cut Chrysanthemum ‘Huangzhonghuang’ to Drought Stress[J].Northern Horticulture,2013,37(3):64.
[7]董延龙,常缨.干旱胁迫对五种观赏蕨类植物叶绿素荧光特性的影响[J].北方园艺,2013,37(15):66.
DONG Yan-long,CHANG Ying.Effects of Drought Stress on Chlorophyll Fluorescence Characteristics of Five Species of Ornamental Ferns[J].Northern Horticulture,2013,37(3):66.
[8]岳桦,石喜梅.聚乙二醇模拟干旱胁迫对兔儿伞生理特性的影响[J].北方园艺,2013,37(11):56.
YUE Hua,SHI Xi-mei.Effects of Drought Stress Simulated by PEG-6000 on Physiological Characteristics of Syneilesis aconitifolia[J].Northern Horticulture,2013,37(3):56.
[9]邹原东,韩振芹,陈秀新,等.干旱胁迫对蓝羊草渗透调节物质和抗氧化酶活性的影响[J].北方园艺,2013,37(23):71.
ZOU Yuan-dong,HAN Zhen-qin,CHEN Xiu-xin,et al.Effect of Drought Stress on Osmotic Adjustment Substance and Antioxidative Activity of Leymus chinensis[J].Northern Horticulture,2013,37(3):71.
[10]余莉琳,裴宗平,孔静,等.干旱胁迫下四种矿区生态修复植物的抗旱性研究[J].北方园艺,2013,37(12):61.
YU Li-lin,PEI Zong-ping,KONG Jing,et al.Drought Resistance of Four Plant Species in Ecological Regeneration on Mining Area Under Drought Stress[J].Northern Horticulture,2013,37(3):61.
备注/Memo
第一作者简介:邱艳秋(1997-),女,硕士研究生,研究方向为药用植物栽培。E-mail:hnautcm@126.com.责任作者:张红瑞(1978-),女,博士,教授,现主要从事中药资源与栽培等研究工作。E-mail:zhanghongrui2003@126.com.基金项目:河南省高等学校重点科研资助项目(19A210005,23A210002);河南省中药材产业科技特派员服务团资助项目(2024);河南省财政科技兴林资助项目(YLK202305)。收稿日期:2024-05-19