[1]朱金霞,孔德杰,尹志荣.农作物秸秆主要化学组成及还田后对土壤质量提升影响的研究进展[J].北方园艺,2020,44(05):146-153.[doi:10.11937/bfyy.20192727]
 ZHU Jinxia,KONG Dejie,YIN Zhirong.Research Progress on the Main Chemical Composition of Straw and Effect of Returning Straw to Fields on Soil Quality Improvement[J].Northern Horticulture,2020,44(05):146-153.[doi:10.11937/bfyy.20192727]
点击复制

农作物秸秆主要化学组成及还田后对土壤质量提升影响的研究进展

参考文献/References:

[1]WANG B,SHEN X,CHEN S,et al.Distribution characteristics,resource utilization and popularizing demonstration of crop straw in southwest China:A comprehensive evaluation[J].Ecological Indicators,2018,93:998-1004.[2]TU W B,ZHANG L X,ZHOU Z G,et al.The development of renewable energy in resource-rich region:A case in China[J].Renewable and Sustainable Energy Reviews,2011,15:856-860.[3]赵亚丽,薛志伟,郭海斌,等,耕作方式与秸秆还田对冬小麦:夏玉米耗水特性和水分利用效率的影响[J].中国农业科学,2014,47(17):3359-3371.[4]ZHAO H L,SHAR A G,LI S,et al.Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system[J].Soil&Tillage Research,2018,175:178-186.[5]XU X,PANG D W,CHEN J,et al.Straw return accompany with low nitrogen moderately promoted deep root[J].Field Crops Research,2018,221:71-80.[6]NIU W J,HUANG G Q,LIU X,et al.Chemical composition and caloric value prediction of wheat straw at different maturity stages using near-infrared reflectance spectroscopy[J].Energy & Fuels,2014,28(12):7474-7482.[7]NIU W J,HAN L J,LIU X,et al.Twenty-two compositional characterizations and theoretical energy potentials of extensively diversied China′s crop residues[J].Energy,2016,100:238-250.[8]胡仕凤,高必达,陈捷.利用微生物技术生产秸秆蛋白质饲料的研究进展[J].中国畜牧兽医,2008,35(4):8-12.[9]ISIKGOR F H,BECER C R.Lignocellulosic biomass:A sustainable platform for the production of bio-based chemicals and polymers[J].Polymer Chemistry,2015(6):4479-4559.[10]HENRIK V S,PETER U.Hemicellulose[J].Plant Biology,2010,61:263-289.[11]李蕊,杨桂花,吕高金,等.玉米秸秆半纤维素的逐级分离及其结构表征[J].中国造纸学报,2017,32(3):1-6.[12]陈哲.小麦秸秆熔融固化产物对硝基苯胺废水的吸附效果研究[D].兰州:兰州理工大学,2010.[13]路瑶,贤勇,宗志敏,等.木质素的结构研究与应用[J].化学进展,2013,25(5):838-858.[14]RENCORET J,GUTIRREZ A,NIETO L,et al.Lignin composition and structure in young versus adult Eucalyptus globulus plants[J].Plant Physiology,2011,155:667-682.[15]NAKASHIMA J,CHEN F,JACKSON L,et al.Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa):Effects on lignin composition in specific cell types[J].New Phytologist,2008,179:738-750.[16]RUEL K,BERRIO-SIERRA J,DERIKVAND M M,et al.Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana[J].New Phytologist,2009,184(1):99-113.[17]GIERLINGER N,SCHWANNINGER M.The potential of raman microscopy and imaging in plant research[J].Spectroscopy,2007,21:69-89.[18]DAVISON B H,DRESCHER S R,TUSKAN G A,et al.Variation of S/G ratio and lignin content in a populus family influences the release of xylose by dilute acid hydrolysis[J].Applied Biochemistry and Biotechnology,2006,130:427-435.[19]李斌,任傲,陈艾莉,等.对青稞秸秆主要营养物质的影响[J].中国饲料,2018(2):76-80.[20]王波,张文会,白婷,等.不同收割时间对青稞秸秆主要营养物质的影响[J].大麦与谷类科学,2018,35(4):7-11.[21]陈国强,金海燕,夏璐,等.25个夏玉米品种秸秆饲用品质评价[J].天津农学院学报,2017,24(2):5-8.[22]朱金霞,孔德杰,李苗,等.施氮量对宁夏扬黄灌区紫薯产量性能及品质的影响[J].北方园艺,2018(24):48-53.[23]张慧玲,王志伟,周中凯.不同汽爆处理对藜麦秸秆化学组成及纤维结构的影响[J].中国农业科技导报,2018,20(7):105-112.[24]魏曼琳,李洋.NaOH处理对玉米秸秆纤维、粗蛋白和可溶性糖含量的影响[J].黑龙江畜牧兽医,2017(24):166-168.[25]KUIJK V S J A,SONNENBERG A S M,BAARS J J P,et al.Fungal treatment of lignocellulosic biomass:Importance of fungal species,colonization and time on chemical composition and in vitro rumen degradability[J].Animal Feed Science and Technology,2015,209:40-50.[26]GODIN B,LAMAUDIRE S,AGNEESSENS R,et al.Chemical characteristics and biofuels potentials of various plant biomasses:Inuence of the harvesting date[J].Journal of the Science of Food and Agriculture,2013,93:3216-3224.[27]ROMERO-GIZA M S,WAHID R,HERNNDEZ V,et al.Improvement of wheat straw anaerobic digestion through alkali pre-treatment:Carbohydrates bioavailability evaluation and economic feasibility[J].Science of the Total Environment,2017,595:651-659.[28]孟利,刘峰,付海燕,等.甜高粱秸秆中可溶性糖提取及组成分析[J].哈尔滨商业大学学报(自然科学版),2015,31(2):166-169.[29]杨天育,何继红,董孔军.6种作物秸秆饲草营养品质的分析与评价[J].西北农业学报,2011,20(11):39-41,45.[30]邰书静,张仁和,史俊通,等.不同玉米品种秸秆饲用品质的研究[J].草业科学,2009,18(5):80-85.[31]刘晓永,李书田.中国秸秆养分资源及还田的时空分布特征[J].农业工程学报,2017,33(21):1-19.[32]CHEN J,ZHENG M J,PANG D W,et al.Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat[J].Journal of Integrative Agric-ulture,2017,16(8):1708-1719.[33]徐莹莹,王俊河,刘玉涛,等.秸秆不同还田方式对土壤物理性状、玉米产量的影响[J].玉米科学,2018,26(5):78-84.[34]XIE J Y,XU M G,QIANGJIU C,et al.Soil aggregation and aggregate associated organic carbon and total nitrogen under long-term contrasting soil management regimes in loess soil[J].Journal of Integrative Agriculture,2015,14(12):2405-2416.[35]宋涛.耕作及秸秆还田对土壤蓄水能力及春玉米水分利用效率的影响[D].沈阳:沈阳农业大学,2016.[36]张玉文.秸秆还田对滨海盐碱棉田物理性状的改良研究[D].泰安:山东农业大学,2016.[37]常勇,黄忠勤,周兴根,等.不同麦秸还田量对水稻生长发育:产量及品质的影响[J].江苏农业科学,2018,46(20):47-51.[38]王擎运,杨远照,徐明岗,等.长期秸秆还田对砂姜黑土矿质复合态有机质稳定性的影响[J].土壤学报,2019,56(5):1108-1117.[39]崔正果,李秋祝,张恩萍,等.玉米秸秆不同还田方式对土壤有机质及微生物数量的影响[J].玉米科学,2018,26(6):104-109.[40]王幸,邢兴华,徐泽俊,等.耕作方式和秸秆还田对黄淮海夏大豆产量和土壤理化性状的影响[J].中国油料作物学报,2017,39(6):834-841.[41]贺美.秸秆还田对黑土有机质变化的影响效应[D].北京:中国农业科学院,2016.[42]薄国栋,申国明,张继光,等.秸秆还田对植烟土壤养分及真菌群落多样性的影响[J].土壤通报,2016,47(1):137-142.[43]颜丽,宋杨,贺靖,等.玉米秸秆还田时间和还田方式对土壤肥力和作物产量的影响[J].土壤通报,2004,35(2):143-148.[44]陈尚洪,朱钟麟,吴婕,等.紫色土丘陵区秸秆还田的腐解特征及对土壤肥力的影响[J].水土保持学报,2006,20(6):141-144.[45]赵凤霞,温晓霞,杜世平,等.渭北地区残茬(秸秆)覆盖农田生态效应及应用技术实例[J].干旱地区农业研究,2005,23(3):90-95.[46]陈兰祥,夏淑芬,徐松林.小麦:玉米轮作覆盖稻草对土壤肥力及产量的影响[J].土壤,1996(3):156-159.[47]张宇冲,何思蓓,高灵会,等.玉米秸秆不同还田方式对土壤有机质及微生物数量的影响[J].北方园艺,2019(12):83-91.[48]谭慧,彭五星,向必坤,等.炭化烟草秸秆还田对连作植烟土壤及烤烟生长发育的影响[J].土壤,2018,50(4):726-731.[49]马琨,宋丽丽,王明国,等.玉米秸秆还田对土壤丛枝菌根真菌群落的影响[J].应用生态学报,2019,30(8):2746-2756.[50]李娜,汤洁,张楠,等.冻融作用对水田土壤有机碳和土壤酶活性的影响[J].环境科学与技术,2015,38(10):38-43.[51]ZHAO S,LI K,ZHOU W,et al.Changes in soil microbial community,enzyme activities and organic matter fractions under long-term straw return in north-central China[J].Agriculture,Ecosystems & Environment,2016,216:82-88.[52]徐忠山,刘景辉,逯晓萍,等.秸秆颗粒还田对黑土土壤酶活性及细菌群落的影响[J].生态学报,2019,39(12):1-9.[53]贺美,王立刚,王迎春,等.黑土活性有机碳库与土壤酶活性对玉米秸秆还田的响应[J].农业环境科学学报,2018,37(9):1942-1951.[54]HU C,QI Y C.Effect of compost and chemical fertilizer on soil nematode community in a Chinese maize field[J].European Journal of Soil Biology,2010,46(3/4):230-236.[55]牟文雅,贾艺凡,陈小云,等.玉米秸秆还田对土壤线虫数量动态与群落结构的影响[J].生态学报,2017,37(3):877-886.[56]牟文雅.转植酸酶玉米秸秆粉碎还田和玉米粉过腹还田对土壤线虫群落的影响[D].南京:南京农业大学,2016.[57]ZHONG S,ZENG H C,JIN Z Q.Influences of different tillage and residue management systems on soil nematode community composition and diversity in the tropics[J].Soil Biology and Biochemistry,2017,107:234-243.[58]郑海睿,骆静梅,刘笑彤,等.秸秆还田量对植物寄生线虫群落的影响[J].生态学杂志,2019,38(6):1725-1731.[59]GU Y G,ZHANG T,CHE H,et al.Influence of retuning corn straw to soil on soil nematode communities in winter wheat[J].Acta Ecologica Sinica,2015,35(2):52-56.[60]连旭.秸秆还田对黑土农田土壤甲螨、跳虫群落结构的影响[D].青岛:青岛大学,2017.

相似文献/References:

[1]邢爽,方颂平,姚洪礼,等.基于中药、菌菇及茶多糖的研究进展[J].北方园艺,2020,44(18):144.[doi:10.11937/bfyy.20194611]
 XING Shuang,FANG Songping,YAO Hongli,et al.Research Progress on Polysaccharides From Chinese Herbs,Mushroom and Tea[J].Northern Horticulture,2020,44(05):144.[doi:10.11937/bfyy.20194611]
[2]张瑜瑜,用成健,刘佳妮,等.云南玉溪地区主栽蓝莓果实花色苷定性检测及其组成分析[J].北方园艺,2021,(08):23.[doi:10.11937/bfyy.20203366]
 ZHANG Yuyu,YONG Chengjian,LIU Jiani,et al.Qualitative Determination and Composition Analysis of Anthocyanins in Main Blueberry Fruits in Yuxi Area of Yunnan Province[J].Northern Horticulture,2021,(05):23.[doi:10.11937/bfyy.20203366]
[3]王鑫淼,荆瑞勇,吴楠,等.不同基质对桑黄菌丝生长及酶活性的影响[J].北方园艺,2022,(09):109.[doi:10.11937/bfyy.20214478]
 WANG Xinmiao,JING Ruiyong,WU Nan,et al.Effects of Different Substrates on Mycelial Growth and Enzyme Activity of Pellinus linteus[J].Northern Horticulture,2022,(05):109.[doi:10.11937/bfyy.20214478]

备注/Memo

第一作者简介:朱金霞(1977-),女,硕士,副研究员,现主要从事农作物秸秆微生物降解及资源化利用等研究工作。E-mail:jinxiazhu001@163.com.责任作者:尹志荣(1982-),女,硕士,副研究员,现主要从事土壤肥力等研究工作。E-mail:yinzhirong1982129@126.com.基金项目:宁夏农林科学院农业自主科技创新专项资助项目(DWX-2018026);宁夏农林科学院科技创新引导资助项目(NKYJ-18-17)。收稿日期:2019-09-17

更新日期/Last Update: 2020-05-03