WANG Shiqi,LI Renping,SONG Lizhi,et al.Effects of Intercropping Belamcanda chinensis on the Structure and Function of Soil Bacterial Community in Poplar Forest Land[J].Northern Horticulture,2024,(19):81-89.[doi:10.11937/bfyy.20240779]
间作射干对杨树林地土壤细菌群落结构和功能的影响
- Title:
- Effects of Intercropping Belamcanda chinensis on the Structure and Function of Soil Bacterial Community in Poplar Forest Land
- 文章编号:
- 1001-0009(2024)19-0081-09
- 分类号:
- S 714.3
- 文献标志码:
- A
- 摘要:
- 以杨树单作土壤、杨树-射干间作系统边缘土壤和中心土壤样品为试材,采用高通量测序方法,研究了间作射干对杨树林地土壤细菌群落组成及功能的影响,以期为筛选杨树林下种植射干的适宜距离提供参考依据。结果表明:间作和单作模式下土壤细菌群落的丰富度指数(Chao1和ACE)、多样性指数(Shannon和Simpson)均无显著差异。土壤变形菌门(Proteobacteria)、酸杆菌门(Acidobacteriota)为不同处理土壤细菌群落的优势菌门,鞘氨醇单胞菌属(Sphingomonas)为优势菌属,间作提高了土壤细菌群落芽单孢菌门(Gemmatimonadota)和绿弯菌门(Chloroflexi)相对丰度,其中B组土壤中的芽单胞菌属(Gemmatimonas)和鞘氨醇单胞菌属丰度升高。根据LEfSe分析发现,B组土壤中有4种细菌类群明显偏高(LDA>4),包括门水平的变形菌门,纲水平的α-变形菌纲(α-Proteobacteria)和Saccharimonadia,科水平的罗丹诺杆菌属(Rhodanobacteraceae)。进一步PICRUSt2功能预测显示,间作提高了碳代谢和丙酮酸代谢功能的相对丰度。综上,杨树-射干间作有助于改善土壤结构,增强土壤代谢功能活性,且种植射干时与杨树留出一定距离为宜。
- Abstract:
- Taking poplar monoculture soil,Poplar-Belamcanda chinens isintercropping system edge soil and centre soil samples as test materials,and high-throughput sequencing method was used,the effects of intercropping with Belamcanda chinensis on the composition and function of soil bacterial community in poplar woodland were studied,in order to provide reference for screening the suitable distance for planting Belamcanda chinensis under poplar forests.The results showed that,there was no significant difference in the richness index (Chao1 and ACE) and diversity index (Shannon and Simpson) of soil bacterial communities between intercropping and monoculture modes.Proteobacteria and Acidobacteriota were the dominant bacterial phyla in soil bacterial communities under different treatments,while Sphingomonas was the dominant bacterial genus.Intercropping increased the relative abundance of soil bacterial communities in the phyla Gemmatimonadota and Chloroflexi,while the abundance of Gemmatimonas and Sphingomonas in group B soil increased.According to LEfSe analysis,there were four bacterial groups in Group B soil that were significantly higher (LDA>4),included Proteobacteria at the phylum level,AlphaProteobacteria and Saccharimonadia at the class level and Rhodanobacteraceae genus at the family level.Further PICRUSt2 functional prediction showed that intercropping increased the relative abundance of carbon metabolism and pyruvate metabolism functions.In summary,intercropping between poplar and Belamcanda chinensis could help improve soil structure,enhance soil metabolic activity,and it is advisable to leave a certain distance from poplar trees when planting Belamcanda chinensis.
参考文献/References:
[1]陈银华.射干化学成分芒果苷的分离鉴定及药材高效液相指纹图谱的研究[D].武汉:湖北中医学院,2007.[2]SZANDRUK M,MERWID-LAD A,SZELAG A.The impact of mangiferin from Belamcanda chinensis on experimental colitis in rats[J].Inflammopharmacology,2018,26(2):571-581.[3]SHI J,LV H,TANG C,et al.Mangiferin inhibits cell migration and angiogenesis via PI3K/AKT/mTOR signaling in high glucose-and hypoxia-induced RRCECs[J].Molecular Medicine Reports,2021,23(6):473.[4]NOH D,CHOI J G,HUH E,et al.Tectorigenin,a flavonoid-based compound of leopard lily rhizome,attenuates UV-B-induced apoptosis and collagen degradation by inhibiting oxidative stress in human keratinocytes[J].Nutrients,2018,10(12):1998.[5]HA D T,BINH B T,THU N T,et al.Four new compounds isolated from the aerial part of Belamcanda chinensis (L.) and their effect on vascular smooth muscle cell (VSMC) proliferation[J].Chemical & Pharmaceutical Bulletin,2019,67(1):41-46.[6]许俊萍,李江,王磊,等.普洱市林下经济发展研究[J].林业调查规划,2016,41(1):120-124.[7]韦宏禧.射干繁育技术及林下引种栽培研究[D].邯郸:河北工程大学,2022.[8]李巧玲,肖忠,任明波,等.间作不同作物对栀子根际土壤微生态的影响[J].微生物学通报,2021,48(10):3588-3602.[9]BOLGER A M,LOHSE M,USADEL B.Trimmomatic:A flexible trimmer for Illumina sequence data[J].Bioinformatics,2014,30(15):2114-2120.[10]MARTIN M.Cutadapt removes adapter sequences from high-throughput sequencing reads[J].EMBnet Journal,2011,17(1):10.[11]EDGAR R C.UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J].Nature Methods,2013,10(10):996-998.[12]EDGAR R C,HAAS B J,CLEMENTE J C,et al.UCHIME improves sensitivity and speed of chimera detection[J].Bioinformatics,2011,27(16):2194-2200.[13]SEGATA N,IZARD J,WALDRON L,et al.Metagenomic biomarker discovery and explanation[J].Genome Biology,2011,12(6):R60.[14]王新宇,高英志.禾本科/豆科间作促进豆科共生固氮机理研究进展[J].科学通报,2020,65(S1):142-149.[15]李显刚,班镁光,周泽英,等.土壤微生物生态学在农业中的应用研究综述[J].中国土壤与肥料,2015(2):5-11.[16]李青山,王梦姣,刘洁然.不同时期油菜根际土壤微生物群落结构多样性及其差异[J].北方园艺,2023(24):72-80.[17]姜琴芳,伏云珍,李倩,等.间作作物种间相互作用对土壤细菌群落的影响[J].西北农业学报,2024,33(3):542-551.[18]林伟伟,李娜,陈丽珊,等.玉米与大豆种间互作对根际细菌群落结构及多样性的影响[J].中国生态农业学报(中英文),2022,30(1):26-37.[19]伏云珍,马琨,崔慧珍,等.间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响[J].生态学杂志,2021,40(1):131-139.[20]陈时鑫,张伟,马丹炜,等.高寒条件下根际环境对极小种群大理白前竞争能力的影响[J].生态学报,2023,43(6):2555-2567.[21]汪堃,南丽丽,师尚礼,等.干旱胁迫对不同根型苜蓿根系生长及根际土壤细菌的影响[J].生态学报,2021,41(19):7735-7742.[22]JANSSEN P H.Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes[J].Applied and Environmental Microbiology,2006,72(3):1719-1728.[23]BARBERáN A,BATES S T,CASAMAYOR E O,et al.Using network analysis to explore co-occurrence patterns in soil microbial communities[J].The ISME Journal,2012,6(2):343-351.[24]顾嘉诚,王文敏,王振,等.玉米/大豆间作对根际土壤磷素生物有效性和微生物群落结构的影响[J].应用生态学报,2023,34(11):3030-3038.[25]刘奎,葛壮,徐英德,等.不同耕作方式下黑土微生物群落对干湿交替的响应[J].土壤学报,2020,57(1):206-216.[26]姜照,杜金华,孙文涛,等.发酵温度对发酵玉米醪中总酸及主要微生物的影响[J].食品与发酵工业,2011,37(6):87-91.
相似文献/References:
[1]朱敬芳,周永斌.GC-MS法测定杨树叶中挥发性物质研究[J].北方园艺,2012,36(06):74.
ZHU Jing-fang,ZHOU Yong-bin.Study on Determination of Volatile Compounds of Poplar Leaves by Gas Chromatography-Mass Spectrometry Method[J].Northern Horticulture,2012,36(19):74.
[2]顾美萍.上海市外环线林带杨树溃疡病的发生原因及防治[J].北方园艺,2012,36(20):131.
GU Mei-ping.The Cause and Prevention of Poplar Canker Disease in Shanghai Outer Ring Forest Belt[J].Northern Horticulture,2012,36(19):131.
[3]徐瑞富,翟凤艳,徐高歌.杨树、苹果树、桃树腐烂病菌致病性及药剂抑菌研究[J].北方园艺,2013,37(18):105.
XU Rui-fu,ZHAI Feng-yan,XU Gao-ge.Study on Pathogenicity and Antibacterial Experiment of Pathogens of Rot Disease of Poplar,Apple and Peach Trees[J].Northern Horticulture,2013,37(19):105.
[4]高国平,王 红,邓秋越,等.杨树叶缘枯病病原菌鉴定及生物学特性[J].北方园艺,2015,39(04):119.[doi:10.11937/bfyy.201504028]
GAO Guo-ping,WANG Hong,DENG Qiu-yue,et al.Study on Pathogen Identification and Biological Characteristics of Pathogenic Fungal of Poplar Leaf Margin Blight[J].Northern Horticulture,2015,39(19):119.[doi:10.11937/bfyy.201504028]
[5]李晓东,樊军锋,邱 兴,等.外源Ca2+对低温胁迫下杨树幼苗抗寒相关生理指标的影响[J].北方园艺,2015,39(11):55.[doi:10.11937/bfyy.201511015]
LI Xiao-dong,FAN Jun-feng,QIU Xing,et al.Effect of Exogenous Ca2+on Physiological Indexes inPoplar Seedlings Under Low Temperature Stress[J].Northern Horticulture,2015,39(19):55.[doi:10.11937/bfyy.201511015]
[6]王 颖,金 华,刘 明 国,等.杨树抗非生物胁迫基因工程研究[J].北方园艺,2010,34(24):0.[doi:10.11937/bfyy.201024076]
W ANG Ying,JIN Hua,LIU Ming -guo,et al.Genetic Engineering of Biological Stress Tolerance in Poplar[J].Northern Horticulture,2010,34(19):0.[doi:10.11937/bfyy.201024076]
[7]周 宏,刘 宏 山,东 昌 山,等.杨树速生丰产林品种对比试验[J].北方园艺,2011,35(01):0.[doi:10.11937/bfyy.201101027]
[J].Northern Horticulture,2011,35(19):0.[doi:10.11937/bfyy.201101027]
[8]田 晓 艳,刘 延 吉,张 阳,等.HPLC 法测定不同产地中药射干的鸢尾苷含量[J].北方园艺,2008,32(11):0.[doi:10.11937/bfyy.2008011079]
TIAN Xiao -yan,LIU Yan -ji,ZHANG Yang,et al.The Analysis of Iridin of Belamcanda Chinensis( L. ) DC fromDifferent Stations[J].Northern Horticulture,2008,32(19):0.[doi:10.11937/bfyy.2008011079]
[9]姚春娟,熊光康,郭圣茂.施肥处理对射干生理和生长的影响[J].北方园艺,2018,42(15):149.[doi:10.11937/bfyy.20180028]
YAO Chunjuan,XIONG Guangkang,GUO Shengmao.Effects of Fertilization Treatments on Physiology and Growth of Belamcanda chinensis[J].Northern Horticulture,2018,42(19):149.[doi:10.11937/bfyy.20180028]
备注/Memo
第一作者简介:王诗琦(1995-),女,硕士,助理工程师,现主要从事杨树遗传育种等研究工作。E-mail:1033026465@qq.com.责任作者:梁德军(1970-),男,硕士,教授级高级工程师,现主要从事森林培育等研究工作。E-mail:759702894@qq.com.基金项目:国家重点研发计划欧美杨大径级工业资源材精准高效培育技术研究资助项目(2021YFD2201201)。收稿日期:2024-02-26