DU Bin.Mechanism of Nitric Oxide Signaling Pathway Regulating AsA-GSH Circulation of Pepper Under High Temperature Stress[J].Northern Horticulture,2024,(14):8-18.[doi:10.11937/bfyy.20240238]
高温胁迫下NO信号途径调控辣椒AsA-GSH循环的机制
- Title:
- Mechanism of Nitric Oxide Signaling Pathway Regulating AsA-GSH Circulation of Pepper Under High Temperature Stress
- 文章编号:
- 1001-0009(2024)14-0008-11
- Keywords:
- pepper; high temperature stress; NO; AsA-GSH circulatory
- 分类号:
- S 641.3
- 文献标志码:
- A
- 摘要:
- 以“新22号”尖椒为试材,采用高温(38±1)℃胁迫条件下,喷施不同浓度外源NO供体SNP、NO合成酶抑制剂、硝酸还原酶抑制剂和NO清除剂的方法,研究了各处理辣椒幼苗内源NO含量、活性氧(ROS)代谢、AsA-GSH循环系统的关键物质含量、关键酶活性及基因表达的影响,以期揭示高温胁迫下NO信号途径调控辣椒AsA-GSH 循环代谢机制。结果表明:高温胁迫可显著提高辣椒内源NO含量,NO清除剂和酶抑制剂可显著降低内源NO含量;添加适当浓度的外源NO可有效提高辣椒叶片抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)、脱氢抗坏血酸还原酶(DHAR)和谷胱甘肽还原酶(GR)的活性,上调辣椒MDHAR、DHAR和GR基因的表达,提高AsA、脱氢抗坏血酸(DHA)、GSH、氧化型谷胱甘肽(GSSG)含量以及AsA/DHA和GSH/GSSG的比值,同时降低O·2产生速率和H2O2含量;添加NO清除剂和合成抑制剂则会逆转上述变化。综上,NO信号途径在辣椒响应高温胁迫的过程中起重要作用,NO信号分子可调控辣椒AsA-GSH循环系统关键基因的表达和翻译后修饰,有效提升关键酶的活性,提高AsA-GSH循环中还原态/氧化态的比例,从而维持体内ROS平衡。补充适量外源NO可有效提升辣椒对高温胁迫的抵抗能力,增强其耐热性。
- Abstract:
- Taking ‘Xinjianjiao 22’ pepper as the experimental material,using the method of spraying different concentrations of exogenous NO donor SNP,NO synthase inhibitor,nitrate reductase inhibitor and NO scavenger under high temperature stress (38±1)℃,the effects of endogenous NO content,ROS metabolism,key substances content,key enzyme activity and gene expression in AsA-GSH circulatory system of different treatments were studied, in order to reveal the mechanism by which the NO signaling pathway regulates the AsA-GSH cycle metabolism of pepper under high-temperature stress.The results showed that high temperature stress could significantly increased the endogenous NO content in pepper,while NO scavengers and enzyme inhibitors could significantly reduce the endogenous NO content.Adding appropriate concentration of exogenous NO could effectively increase the enzyme activities of ascorbate peroxidase (APX),monodehydroascorbate reductase (MDHAR),dehydroascorbate reductase (DHAR) and glutathione reductase (GR),up-regulate the expression of MDHAR,DHAR and GR genes,and increase the levels of AsA,dehydroascorbic acid (DHA),GSH and oxidized glutathione (GSSG).Adding NO scavenger and synthesis inhibitor would reverse the above changes.The results showed that NO signaling pathway played an important role in the response of pepper to high temperature stress,and NO signaling molecules could regulate the expression and post-translation modification of key genes in AsA-GSH circulation system of pepper,effectively enhance the activity of key enzymes,and increase the ratio of reduced state to oxidized state in AsA-GSH circulation,thus maintaining the balance of ROS in vivo.Supplementing appropriate exogenous NO could effectively improve the resistance of pepper to high temperature stress and enhance its heat resistance.
参考文献/References:
[1]王静,谭放军,梁成亮,等.辣椒热激蛋白HSP90家族基因鉴定及分析[J].园艺学报,2020,47(4):665-674.[2]ASTIER J,JEANDROZ S,WENDEHENNE D.Nitric oxide synthase in plants:the surprise from algae[J].Plant Science:An International Journal of Experimental Plant Biology,2018,268:64-66.[3]KAYA C,ASHRAF M,AL-HUQAIL A A,et al.Silicon is dependent on hydrogen sulphide to improve boron toxicity tolerance in pepper plants by regulating the AsA-GSH cycle and glyoxalase system[J].Chemosphere,2020,257:127241.[4]韩敏,曹逼力,刘树森,等.低温胁迫下番茄幼苗根穗互作对其抗坏血酸-谷胱甘肽循环的影响[J].园艺学报,2019,46(1):65-73.[5]许婷婷,张婷婷,姚文思,等.热处理对低温胁迫下黄瓜活性氧代谢和膜脂组分的影响[J].核农学报,2020,34(1):85-93.[6]李进,雷斌,翟梦华,等.棉花幼苗AsA-GSH循环对低温胁迫的响应机制研究[J].核农学报,2021,35(1):221-228.[7]山溪,秦文斌,张振超,等.低温胁迫对不同品系甘蓝幼叶AsA-GSH循环代谢的影响[J].南方农业学报,2018,49(11):2230-2235.[8]ASTIER J,LINDERMAYR C.Nitric oxide-dependent posttranslational modification in plants:An update[J].International Journal of Molecular Sciences,2012,13(11):15193-15208.[9]MUKHERJEE S.Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants[J].Nitric Oxide,2019,82:25-34.[10]杨建军,张国斌,郁继华,等.盐胁迫下内源NO对黄瓜幼苗活性氧代谢和光合特性的影响[J].中国农业科学,2017,50(19):3778-3788.[11]袁满,徐迎春,牛叶青,等.乙烯与NO互作对镉胁迫下荷花的抗坏血酸-谷胱甘肽循环的影响[J].应用生态学报,2018,29(10):3433-3440.[12]KOV〖AKCˇ〗IK J,KLEJDUS B,BABULA P.Oxidative stress,uptake and bioconversion of 5-fluorouracil in algae[J].Chemosphere,2014,100:116-123.[13]尚宏芹,高昌勇.外源NO对高温胁迫下辣椒幼苗生长和生理指标的影响[J].核农学报,2015,29(8):1617-1623.[14]高春华,冯波,曹芳,等.施氮量对花后高温胁迫后小麦同化物积累、转运及产量的影响[J].中国农业科学,2020,53(21):4365-4375.[15]杨娅倩.外源亚精胺对高温胁迫下葡萄幼苗生理生化特性的影响[D].泰安:山东农业大学,2020.[16]陈秀萍,贺漫媚,王伟,等.高温胁迫对2种兜兰叶片生理生化指标的影响[J].中国农学通报,2020,36(28):72-77.[17]ZHANG X,LIU Y,LIU Q,et al.Nitric oxide is involved in abscisic acid-induced photosynthesis and antioxidant system of tall fescue seedlings response to low-light stress[J].Environmental and Experimental Botany,2018,155:226-238.[18]ZHOU Y H,YU J Q,HUANG L F,et al.The relationship between CO2 assimilation,photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery[J].Plant,Cell & Environment,2004,27(12):1503-1514.[19]吴雪霞,张圣美,杨左芬,等.短期温度胁迫对西葫芦叶片抗坏血酸代谢系统的影响[J].上海农业学报,2020,36(1):53-58.[20]MURSHED R,LOPEZ-LAURI F,SALLANON H.Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L.,cv.Micro-tom)[J].Physiology and Molecular Biology of Plants,2013,19(3):363-378.[21]HANCOCK J T,WHITEMAN M.Hydrogen sulfide signaling:interactions with nitric oxide and reactive oxygen species[J].Annals of the New York Academy of Sciences,2016,1365(1):5-14.[22]SAMI F,FAIZAN M,FARAZ A,et al.Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance,NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress[J].Nitric Oxide:Biology and Chemistry,2018,73:22-38.[23]BAUDOUIN E,HANCOCK J T.Nitric oxide signaling in plants[J].Frontiers in Plant Science,2014(4):553.[24]关美艳.一氧化氮清除系统在拟南芥应答镉胁迫过程中的作用及其机制[D].杭州:浙江大学,2018.[25]骆巧娟,苏桐,魏小红.信号分子对盐胁迫番茄种子萌发及NP24和PR-5基因表达的影响[J].分子植物育种,2019,17(2):370-376.[26]LIANG Y,ZHENG P,LI S,et al.Nitrate reductase-dependent NO production is involved in H2 S-induced nitrate stress tolerance in tomato via activation of antioxidant enzymes[J].Scientia Horticulturae,2018,229:207-214.[27]HUANG D J,HUO J Q,ZHANG J,et al.Protein S-nitrosylation in programmed cell death in plants[J].Cellular and Molecular Life Sciences,2019,76(10):1877-1887.[28]FENG J,CHEN L,ZUO J.Protein S-Nitrosylation in plants:current progresses and challenges[J].Journal of Integrative Plant Biology,2019,61(12):1206-1223.[29]SHAN C,WANG B,SUN H,et al.H2S induces NO in the regulation of AsA-GSH cycle in wheat seedlings by water stress[J].Protoplasma,2020,257(5):1487-1493.[30]李凯,马利萍,杨天一,等.外源NO对钠盐胁迫下苹果砧木M26幼苗光合和生理特性的影响[J].北方园艺,2022(16):23-30.[31]KAYA C.Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system[J].Physiologia Plantarum,2021,172(2):351-370.
相似文献/References:
[1]胡凤霞,唐艳领,刘金,等.辣椒砧木的筛选及其耐盐性研究[J].北方园艺,2013,37(04):24.
[2]陈 潇,盛萍萍,刘润进,等.西瓜与辣椒间作体系接种AM真菌对连作西瓜植株[J].北方园艺,2014,38(12):6.
CHEN Xiao,SHENG Ping-ping,LIU Run-jin,et al.Effect of Intercropping System of Pepper-Watermelon Crops Inoculating Arbuscular Mycorrhizal Fungus on Growth and Defence Enzymes Activity of the Continuous Cropping Watermelon[J].Northern Horticulture,2014,38(14):6.
[3]张婷玉,林 多,杨延杰.辣椒根系分泌物的收集方法研究[J].北方园艺,2014,38(12):14.
ZHANG Ting-yu,LIN Duo,YANG Yan-jie.Study on Collection Method of Root Exudates on Pepper[J].Northern Horticulture,2014,38(14):14.
[4]叶 林,李春江,张光弟,等.不同育苗穴数、基质配比和施肥量对温室辣椒幼苗生长及其秧苗质量的影响[J].北方园艺,2014,38(13):50.
YE Lin,LI Chun-jiang,ZHANG Guang-di,et al.Effects of Different Seedling Number of Holes,Substrates and Fertilization on the Growth and Quality of Greenhouse Pepper Seedlings[J].Northern Horticulture,2014,38(14):50.
[5]王振兴,艾 军,杨义明,等.不同温度对五味子叶片光系统 Ⅱ 活性的影响[J].北方园艺,2014,38(14):160.
WANG Zhen-xing,AI Jun,YANG Yi-ming,et al.Effect of Different Temperature Treatments on Photosystem Ⅱ in Leaves of Schisandra chinensis (Turcz.) Baill.[J].Northern Horticulture,2014,38(14):160.
[6]孔小平,苗增建.等离子体处理辣椒种子对其性状及产量的影响[J].北方园艺,2013,37(13):34.
KONG Xiao-ping,MIAO Zeng-jian.Effect of Plasma Treatment on Characters and Output of Pepper Seeds[J].Northern Horticulture,2013,37(14):34.
[7]高万里.白城地区辣椒产业发展对策研究[J].北方园艺,2014,38(04):159.
GAO Wan-li.Study on the Development Countermeasure of Pepper Industry in Baicheng Area[J].Northern Horticulture,2014,38(14):159.
[8]岳振平.不同种植密度对早春大棚辣椒产量和产值的影响[J].北方园艺,2014,38(05):51.
YUE Zhen-ping.Effect of Different Planting Densty on Fruit Yield and Output Value of Pepper in Early Spring[J].Northern Horticulture,2014,38(14):51.
[9]郭亚华,谢立波,王雪,等.辣椒经地面模拟诱变后的RAPD鉴定[J].北方园艺,2014,38(05):95.
GUO Ya-hua,XIE Li-bo,WANG Xue,et al.The RAPD Detection of Capsicum annuum L. After Ground Simulation[J].Northern Horticulture,2014,38(14):95.
[10]高海娜,张百忍,王朝阳,等.紫阳高硒土对不同品种辣椒含硒量的影响[J].北方园艺,2014,38(06):42.
GAO Hai-na,ZHANG Bai-ren,WANG Zhao-yang,et al.Influence of Ziyang High Selenium Soil on Selenium Content of Different Pepper Varieties[J].Northern Horticulture,2014,38(14):42.
备注/Memo
作者简介:杜宾(1980-),男,博士,副教授,现主要从事植物保护等研究工作。E-mail:dubin23@126.com.基金项目:山西省科技厅重点研发计划资助项目(201803D221004-2)。收稿日期:2024-01-16