ZHANG Panpan,GAO Yan,WANG Xiaolin,et al.Effects of Melatonin on Seedlings Morphology and Physiological Characteristics of Lettuce Under PEG Stress[J].Northern Horticulture,2022,(10):1-8.[doi:10.11937/bfyy.20214324]
PEG胁迫下褪黑素对生菜幼苗形态和生理特性的影响
- Title:
- Effects of Melatonin on Seedlings Morphology and Physiological Characteristics of Lettuce Under PEG Stress
- Keywords:
- lettuce; melatonin; drought stress; morphology; physiological characteristics
- 文献标志码:
- A
- 摘要:
- 以‘奥跃生菜’为试材,采用盆栽法,设置正常浇灌营养液(对照,CK)、根系浇灌含有100 μmol?L-1褪黑素的营养液(MT)、根系浇灌含有25%PEG的营养液(D)和25%PEG的营养液+根系浇灌含有100 μmol?L-1褪黑素的营养液(D+ MT)4个处理,研究了PEG胁迫下褪黑素对生菜幼苗生长和生理特性的影响,以期为褪黑素在生菜中抗旱栽培的应用提供参考依据。结果表明:干旱胁迫下根施褪黑素生菜幼苗总根长、根体积、根表面积、根平均直径、地上地下部分干质量、根冠比、叶绿素相对含量显著增加(P<0.05),叶片相对含水量也呈增加趋势,但差异不显著;同时干旱胁迫下褪黑素增加了生菜叶片实际光化学效率和光化学淬灭系数,降低了叶片PSⅡ的非光化学淬灭系数;除根系过氧化物酶(POD)活性外,干旱胁迫下根施褪黑素幼苗叶片和根系超氧化物歧化酶(SOD)活性、POD 活性、可溶性蛋白质含量均升高;而丙二醛(MDA)含量下降;其中SOD活性差异在叶片和根系中均达显著水平(P<0.05)。因此,根施100 μmol?L-1褪黑素能够通过调控生菜幼苗形态特征,增强根系和叶片保护酶活性和可溶性蛋白质含量,提高生菜叶片光合指标,来缓解生菜在干旱条件下受到的胁迫作用。
- Abstract:
- ‘Aoyue lettuce’ was used as the experimental material.The potted method was adopted,four treatments were set up including the nutrient solution (CK),the nutrient solution containing 100 μmol?L-1 melatonin (MT),the nutrient solution containing 25% PEG (D) and 25%PEG nutrient solution + root irrigation nutrient solution contained 100 μmol?L-1 melatonin (D+MT), and the effects of melatonin on the growth and physiological characteristics of lettuce seedlings under PEG stress were studied,in order to provide reference for drought-resistant cultivation of melatonin in lettuce.The results showed that root length,root volume,root area,average root diameter,aboveground and underground dry weight and root-shoot ratio of melatonin applied lettuce seedlings were significantly increased in melatonin applied to roots under drought stress (P<0.05),leaf relative water content also increased,but the difference was not significant.Melatonin increased the actual photochemical efficiency and photochemical quenching coefficient of the photosystem Ⅱ of lettuce leaves,and decreased the non-photochemical quenching coefficient of PS components in leavesunder drought stress.In addition to root peroxidase (POD) activity,superoxide dismutase (SOD) activity,peroxidase (POD) activity and soluble protein content in leaves and roots were increased by melatonin under drought stress,but malondialdehyde (MDA) contentin leaves and roots decreased.SOD activity in roots and leaves was significantly different between D and D+MT (P<0.05).Therefore,root application of 100 μmol?L-1 melatonin can regulate the morphological characteristics of lettuce seedlings,enhance the activities of protective enzymes and soluble protein content in roots and leaves,and improve photosynthetic index of lettuce leaves,alleviating the stress of lettuce under drought conditions,thus providing theoretical basis for high yield cultivation of lettuce.
参考文献/References:
[1]LEE D Y,CHOI G H,MEGSON D,et al.Effect of soil organic matter on the plant uptake of perfluorooctanoic acid (PFOA) and perfluorooctanesulphonic acid (PFOS) in lettuce on granular activated carbon-applied soil[J].Environmental Geochemistry and Health,2021,43:2193-2202.[2]罗康胜,张米欢,翟兆东,等.生菜WOX 基因家族的鉴定与分析[J/OL].分子植物育种.(2021-07-21)[2021-06-22].https://kns.cnki.net/kcms/detail/46.1068.S.20210622.1012.002.html.[3]WU L M,ZHANG X C,XIAO G H.Effects of environmental factors on tomato growth and development[J].Agricultural Science & Technology,2015,30(2):214-219.[4]罗漫雅,耿广坡,周洪奎,等.常用气象干旱指数SPEI和SPI在陕北地区的适用性研究[J].湖北农业科学,2020,59(21):42-50.[5]SORRENTINO M,COLLA G,ROUPHAEL Y,et al.Lettuce reaction to drought stress:Automated high-throughput phenotyping of plant growth and photosynthetic performance[J].Acta Horticulturae,2020,1268:133-142.[6]杨新元.外源褪黑素对干旱胁迫下向日葵幼苗生长、光合及抗氧化系统的影响[J].华北农学报,2019,34(4):113-121.[7]李鹏辉,向金友,王林,等.干旱胁迫下外源褪黑素对烟草幼苗生理特性的影响[J].中国农业科技导报,2019,21(5):41-48.[8]李琳琳,宋彦涛,金华,等.外源褪黑素对干旱胁迫下番茄叶片光合特性和抗氧化酶系统的影响[J].大连民族大学学报,2019,21(1):33-38.[9]张明聪,何松榆,秦彬,等.外源褪黑素对干旱胁迫下春大豆品种绥农 26 形态、光合生理及产量的影响[J].作物学报,2021,47(9):1791-1805.[10]邹京南,于奇,金喜军,等.外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响[J].作物学报,2020,46(5):745-758.[11]赵成凤,李红杰,郑学慧,等.干旱及复水条件下外源褪黑素对玉米叶片光合作用的影响[J].生态学报,2021,41(4):1431-1439.[12]李红叶,翟秀珍,张少聪,等.外源褪黑素对干旱胁迫下小麦发芽及幼苗生理特性的影响[J].西北农林科技大学学报(自然科学版),2021(6):2-11.[13]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.[14]王学奎,黄见良,李合生.中国植物生理学教材建设的回顾、探索与展望[J].植物生理学报,2013,49(6):510-514.[15]赵海泉.基础生物学实验指导植物生理学分册[M].北京:中国农业大学出版社,2009.[16]张志良,瞿伟菁,李小方.植物生理学实验指导[M].北京:高等教育出版社,2009.[17]LI L J,GU W R,LI J,et al.Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones[J].Plant Physiology and Biochemistry,2018,129:35-55.[18]张盼盼,杨裕然,薛佳欣,等.烯效唑对盐胁迫下糜子幼苗形态和生理特性的调控效应[J].草业学报,2020,29(10):81-90.[19]马旭辉,陈茹梅,柳小庆,等.褪黑素对玉米幼苗根系发育和抗旱性的影响[J].生物技术通报,2021,37(2):1-14.[20]MUHAMMAD A S R,MUHAMMAD F S,MUHAMMAD Y A,et al.Glycinebetaine applied under drought improved the physiological efficiency of wheat (Triticum aestivum L.)plant[J].Soil & Environment,2012,31(1):67-71.[21]李冬,申洪涛,王艳芳,等.外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响[J].草业学报,2021,30(1):130-139.[22]郄亚微.硅对干旱胁迫下生菜幼苗生长及光合特性的影响[J].北方园艺,2021(6):8-14.[23]方怡然,薛立.盐胁迫对植物叶绿素荧光影响的研究进展[J].生态科学,2019,38(3):225-234.[24]邵瑞鑫,李蕾蕾,郑会芳,等.外源一氧化氮对干旱胁迫下玉米幼苗光合作用的影响[J].中国农业科学,2016,49(2):251-259.[24]张环纬,陈彪,温心怡,等.外源硅对干旱胁迫下烟草幼苗生长、叶片光合及生理指标的影响[J].生物技术通报,2019,35(1):23-32.[25]吴燕,连洪燕,牟雪姣,等.干旱胁迫下叶面喷施褪黑素对滁菊幼苗生理生化特性的影响[J].西北植物学报,2016,36(11):2241-2246.[26]张俊康,马丽,吴姝青,等.外源褪黑素对软枣猕猴桃低温伤害的缓解效应[J].植物生理学报,2020,56(5):1081-1087.
相似文献/References:
[1]马荣金,张红.管道水培生菜育苗基质筛选研究[J].北方园艺,2013,37(04):12.
[2]张菊平,刘清文,陈文明.不同铁肥对无土栽培生菜生长及品质的影响[J].北方园艺,2014,38(13):186.
ZHANG Ju-ping,LIU Qing-wen,CHEN Wen-ming.Effect of Different Kinds of Ferric Fertilizer on Growth and Quality of Lettuce Under Soilless Condition[J].Northern Horticulture,2014,38(10):186.
[3]周继华,王志平,刘宝文.痕量灌溉对温室生菜生长和产量及水分利用效率的影响[J].北方园艺,2013,37(13):51.
ZHOU Ji-hua,WANG Zhi-ping,LIU Bao-wen.Effect of Trace Irrigation on Growth,Yield and Water Use Efficiency of Lettuce[J].Northern Horticulture,2013,37(10):51.
[4]胡俊杰,金伊洙.不同碳源和氮源对生菜褐斑病菌生长的影响[J].北方园艺,2014,38(01):114.
HU Jun-jie,JIN Yi-zhu.Effect of Different Carbon and Nitrogen Sources on the Growth of Lettuce Carpospores[J].Northern Horticulture,2014,38(10):114.
[5]付为国,尹淇淋,李萍萍.光照环境对生菜生长过程和贮存影响的研究进展[J].北方园艺,2013,37(14):184.
FU Wei-guo,YIN Qi-linLI Ping-ping.Research Progress on Effects of Light on Growth Process and Storage of Romaine Lettuce[J].Northern Horticulture,2013,37(10):184.
[6]毛金柱,邱权,张芳,等.荧光灯下不同光周期对生菜形态指标、品质和离子吸收量的影响[J].北方园艺,2013,37(15):24.
MAO Jin-zhu,QIU Quan,ZHANG Fang,et al.Impact of Different Photoperiods on the Morphological Index,Quality and Absorptive Amount to Ions of Lettuce in Fluorescent Light Source[J].Northern Horticulture,2013,37(10):24.
[7]张林青,王露静.海藻酸钠涂膜对生菜贮藏效果的影响[J].北方园艺,2014,38(08):122.
ZHANG Lin-qing,WANG Lu-jing.Storage Effect of Sodium Alginate on Lettuce[J].Northern Horticulture,2014,38(10):122.
[8]李新江.“富安”牌有机肥不同施用量对结球生菜生长的影响[J].北方园艺,2013,37(17):186.
LI Xin-jiang.Effects of Different Amounts of ‘Fuan’ Organic Fertilization on the Growth of Lettuce[J].Northern Horticulture,2013,37(10):186.
[9]马沛勤,陈莉,陈俊.Cu2+胁迫下三种蔬菜四种抗氧化生理指标的变化[J].北方园艺,2013,37(10):11.
MA Pei-qin,CHEN Li,CHEN Jun.Study on the Cu2+ Stress on Physiological and Biochemical Index in Three Kinds of Vegetables[J].Northern Horticulture,2013,37(10):11.
[10]弓瑞娟,张佳俊,韩鹏,等.外源γ-氨基丁酸处理时间对生菜硝酸盐含量和营养品质的影响[J].北方园艺,2012,36(01):15.
GONG Rui-juan,ZHANG Jia-jun,HAN Peng,et al.Effect of Exogenous Application γ-aminobutyric Acid Time on Nitrate Content and Quality of Lettuce[J].Northern Horticulture,2012,36(10):15.
[11]习林杰,王晨雨,严露露,等.外源褪黑素对生菜根系生长及内源褪黑素含量的影响[J].北方园艺,2019,43(06):7.[doi:10.11937/bfyy.20182428]
XI Linjie,WANG Chenyu,YAN Lulu,et al.Effect of Exogenous Melatonin on Root Growth and Endogenous Melatonin Content of Lettuce[J].Northern Horticulture,2019,43(10):7.[doi:10.11937/bfyy.20182428]
备注/Memo
第一作者简介:张盼盼(1985-),女,博士,副教授,现主要从事作物逆境栽培生理生态等研究工作。E-mail:zpp35@163.com.责任作者:张雄(1970-),男,博士,教授,现主要从事旱作农业生理生态等研究工作。E-mail:zhangxiong138912@163.com.基金项目:国家自然科学基金资助项目(31860340);陕西省自然科学基础研究计划资助项目(2020JQ-902);陕西省产业技术体系资助项目(2021);榆林市科技局科技计划资助项目(2018-cxy-2);榆林学院引进人才科研启动资助项目(17GK21)。收稿日期:2021-10-26