ZHAO Shufang,HU Yao.Relationship Between Carbon Storage and Respiration in Different Wetland Ecosystems in the Yellow River[J].Northern Horticulture,2021,(16):94-101.[doi:10.11937/bfyy.20204375]
黄河流域不同湿地生态系统土壤呼吸和碳储量
- Title:
- Relationship Between Carbon Storage and Respiration in Different Wetland Ecosystems in the Yellow River
- 文献标志码:
- A
- 摘要:
- 以黄河流域湿地保护区为研究对象,采用涡度相关法,对黄河流域不同湿地生态系统呼吸通量观测,并测定了不同湿地植被碳储量和土壤碳储量,探讨了不同湿地生态系统碳储量与呼吸的关系,探究湿地碳循作用机理,以期为保护湿地生态系统提供参考依据。结果表明:在季节尺度上,黄河流域不同湿地植被生长季具有明显的碳汇功能,生态系统呼吸(Rs)随着月份的增加呈倒“V”型变化特征;生态系统碳交换(NEE)和生态系统总初级生产力(GPP)随着月份的增加呈“V”型变化特征,在8月达到最大。不同湿地植被生物量与碳储量的分布基本一致,其中地上生物量高于地下生物量;植被碳储量大致表现为芦苇群落>苔草群落>水蓼群落>荫草群落,其中不同湿地群落植被碳储量差异均显著(P<0.05)。土壤有机碳含量和有机碳储量均呈一致的变化规律,其中以表层土壤最高,随土壤深度的增加逐渐降低,其中20~40 cm以下土壤有机碳含量变化范围相对较小;80~100 cm土壤有机碳含量最低。土壤有机碳储量和植被碳储量与生态系统碳呼吸呈显著或极显著正相关;GPP和PAR与植被碳和有机碳储量没有显著的相关性,PAR与有机碳和有机碳储量呈负相关;从相关系数绝对值来看,与土壤有机碳储量的相关系数高于植被碳储量的相关系数,并且芦苇群落、苔草群落的相关系数绝对值高于水蓼群落、荫草群落。土壤有机碳储量和植被碳储量对NEE的路径系数分别为0.52和0.43,表明土壤有机碳储量和植被碳储量直接影响黄河流域芦苇湿地NEE通量,而Rs对NEE通量起到间接的影响作用;此外,光合有效辐射与NEE呈显著负相关关系,即随着PAR的增强,芦苇湿地生态系统的固碳能力在逐渐增强。由此说明土壤有机碳储量能够更好的指示NEE通量的变化。
- Abstract:
- Taking the wetland reserve of the Yellow River Basin as the research object.By using the vorticity correlation method,the respiration flux of different wetland ecosystems in the Yellow River delta was observed,and the carbon reserves of different wetland vegetation and soil organic carbon reserves were measured,and the relationship between carbon reserves and respiration of different wetland ecosystems was discussed,the mechanism of wetland carbm cycle was explored,in order to provide reference for protecting wetlands.The results showed that,on a seasonal scale,the vegetation growth season of different wetlands in the Yellow River delta had significant carbon sink function,and the ecosystem respiration (Rs) showed an inverted ‘V’ pattern with the increase of months,reaching its maximum in August.Ecosystem carbon exchange (NEE) and ecosystem total primary productivity (GPP) showed a ‘V’ pattern as the months increase,reaching their peak in August.The distribution of vegetation biomass and carbon storage in different wetlands was basically the same,in which the aboveground biomass was higher than the underground biomass.The carbon storage of vegetation was generally shown as Phragmites>Cyperaceae>Polygonum hydropiper>Phalaris arundinacea, and the carbon storage of vegetation in different wetland communities were significantly different (P<0.05).Both soil organic carbon content and organic carbon storage showed consistent change trend,among which the topsoil was the highest and gradually decreased with the increase of soil depth.The soil organic carbon content below 20-40 cm had relatively small variation range.The soil organic carbon content in 80-100 cm was the lowest.Soil organic carbon storage and vegetation carbon storage were positively correlated with ecosystem carbon respiration.There was no significant correlation between GPP and PAR and vegetation carbon and organic carbon storage,and PAR was negatively correlated with organic carbon and organic carbon storage.From the perspective of absolute correlation coefficient,the correlation coefficient with soil organic carbon storage was higher than that of vegetation carbon storage,and the absolute correlation coefficient of Phragmites and Cyperaceae were higher than that of Polygonum hydropiper and Phalaris arundinacea.The path coefficients of soil organic carbon reserve and vegetation carbon reserve on NEE were 0.52 and 0.43,respectively,indicating that soil organic carbon reserve and vegetation carbon reserve directly affect NEE flux of Phragmites wetland in the Yellow River delta,while Rs indirectly affect NEE flux.In addition,photosynthetic effective radiation showed a significant negative correlation with NEE,that was,with the enhancement of PAR,the carbon sequestration capacity of Phragmites wetland ecosystem was gradually enhanced.This indicates that soil organic carbon reserve can better indicate the change of NEE flux.
参考文献/References:
[1]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001(1):13-16.[2]刘迎春,王秋凤,于贵瑞,等.黄土丘陵区两种主要退耕还林树种生态系统碳储量和固碳潜力[J].生态学报,2011,31(15):4277-4286.[3]杨洪晓,吴波,张金屯,等.森林生态系统的固碳功能和碳储量研究进展[J].北京师范大学学报(自然科学版),2005,41(2):172-177.[4]罗云建,张小全,朱建华,等.关帝山林区退化灌木林转变为华北落叶松林对生态系统碳储量的影响[J].生态学报,2018,38(23):8354-8362.[5]陈顺洋,陈彬,欧丹云,等.印度尼西亚北苏拉威西红树林生态系统碳库研究[J].海洋学报(中文版),2018,37(12):85-91.[6]王伯炜,牟长城,王彪.长白山原始针叶林沼泽湿地生态系统碳储量[J].生态学报,2019,39(9):3344-3354.[7]周序力,蔡琼,熊心雨,等.贵州月亮山不同演替阶段亮叶水青冈林碳储量及其分配格局[J].植物生态学报,2018,42(7):703-712.[8]卢立华,农友,李华,等.植被恢复模式对石漠化生态系统碳储量的影响[J].生态学报,2019,39(19):34-39.[9]徐丽,于贵瑞,何念鹏.1980s—2010s 中国陆地生态系统土壤碳储量的变化[J].地理学报,2018(11):9-15.[10]柯新利,唐兰萍.城市扩张与耕地保护耦合对陆地生态系统碳储量的影响:以湖北省为例[J].生态学报,2019,39(2):672-683.[11]霍常富,王朋,陈龙池,等.杉木人工林蓄积量和生态系统碳数量成熟龄的关系[J].中南林业科技大学学报,2018(9):94-99.[12]李学峰,王克勤,宋娅丽,等.等高反坡阶对滇中云南松林生态系统碳储量及增量分配格局的影响[J].水土保持研究,2019(5):4-9.[13]周汝波,林媚珍,吴卓,等.珠江西岸生态系统碳储量对土地利用变化的响应[J].生态科学,2018,37(6):175-183.[14]王瑞利,张存厚,王明玖.基于 DNDC 模型的赛罕乌拉自然保护区草地生态系统碳动态[J].中国草地学报,2019(4):23-26.[15]闫苏,牟长城,王伯炜,等.温带长白山天然阔叶林沼泽湿地生态系统碳储量[J].北京林业大学学报,2018,40(8):1-11.[16]马维伟,王跃思,李广,等.尕海湿地植被退化过程中植被-土壤系统有机碳储量变化特征[J].应用生态学报,2018,29(12):3900-3906.[17]孙丽娜,范晓辉,王孟本.山西森林植被碳储量空间分布格局[J].山西大学学报(自然科学版),2018,41(1):226-232.[18]范立红,朱建华,李奇,等.三峡库区土地利用/覆被变化对碳储量的影响[J].南京林业大学学报 (自然科学版),2018,42(4):53-60.[19]李永进,汤玉喜,唐洁,等.中亚热带4种混交幼龄人工林生态系统碳贮量特征[J].中南林业科技大学学报,2019(5):10-15.[20]邬嘉华,庞惠,卓义,等.植被退化对温带典型草原根系-土壤系统碳氮分配的影响[J].生态学报,2018,38(15):5340-5350.[21]官惠玲,樊江文,李愈哲,等.海南岛天然草地有机碳分布格局及碳储量估算[J].生态环境学报,2019,28(6):1092-1099.[22]林婉奇,佘汉基,薛立.韶关市小坑林场山杜英幼林植被层生物量和碳储量的分配格局[J].生态环境学报,2019,28(1):83-89.
相似文献/References:
[1]焦迎春,卢素锦.青海大通周边地区不同土壤结构微生物种群研究[J].北方园艺,2013,37(08):178.
JIAO Ying-chun,LU Su-jin.Study on Microbial Population in Different Soil Structures in Surrounding Areas of Datong of Qinghai[J].Northern Horticulture,2013,37(16):178.
[2]朱成华,袁云香.黄河三角洲植物多样性及其应用价值研究[J].北方园艺,2012,36(22):85.
ZHU Cheng-hua,YUAN Yun-xiang.Study on Plant Diversity and Its Application Value of the Yellow River Delta[J].Northern Horticulture,2012,36(16):85.
[3]石宝军,王立科.衡水湖湿地生态资源保护与开发对策研究[J].北方园艺,2012,36(22):89.
SHI Bao-jun,WANG Li-ke.Countermeasure Research on Protection and Development of Ecological Resource in Hengshui Lake[J].Northern Horticulture,2012,36(16):89.
[4]苏芳莉,吴新梅,李海福,等.造纸废水灌溉对土壤中pH值、Ca2+、反硝化细菌的影响[J].北方园艺,2014,38(16):168.
SU Fang-li,WU Xin-mei,LI Hai-fu,et al.Effect of Paper Making Wastewater on Soil pH,Ca2+,Denitrifying Bacteria[J].Northern Horticulture,2014,38(16):168.
[5]袁龙义,薛兴华,经博翰.水生植物生长格局和繁殖特点研究进展[J].北方园艺,2013,37(24):191.
YUAN Long-yi,XUE Xing-hua,JING Bo-han.Research Advances of Growth Pattern and Propagation Characteristics of Aquatic Plants[J].Northern Horticulture,2013,37(16):191.
[6]李 月 瑶,梁 成 华,王 延 松,等.河口湿地土壤砷吸附- 解吸特性的研究[J].北方园艺,2010,34(13):0.[doi:10.11937/bfyy.2010013013]
LI Yue -yao,LIANG Cheng -hua,W ANG Yan-song,et al.Study on the As Adsorption-desorption Characteristics of Wetland Soils[J].Northern Horticulture,2010,34(16):0.[doi:10.11937/bfyy.2010013013]
[7]郑佳玉,侯永侠,杨继松,等.湿地土壤酶种类及其影响因素的研究进展[J].北方园艺,2018,42(05):154.[doi:10.11937/bfyy.20172628]
ZHENG Jiayu,HOU Yongxia,YANG Jisong,et al.Research Progress on Category and Influencing Factor of Soil Enzymes in Wetland[J].Northern Horticulture,2018,42(16):154.[doi:10.11937/bfyy.20172628]
[8]宗瑾,金日,金雪梅,等.吉林省延边州湿地土壤全氮空间分布及驱动力分析[J].北方园艺,2023,(06):62.[doi:10.11937/bfyy.20222382]
ZONG Jin,JIN Ri,JIN Xuemei,et al.Spatial Distribution and Driving Forces of Total Nitrogen in Wetland Soil in Yanbian Prefecture,Jilin Province[J].Northern Horticulture,2023,(16):62.[doi:10.11937/bfyy.20222382]
备注/Memo
第一作者简介:赵淑芳(1981-),女,硕士,讲师,现主要从事园林景观生态等研究工作。E-mail:Shufang_zhaoo@163.com.基金项目:国家自然科学基金资助项目(48023615)。收稿日期:2020-10-20