JIN Minglan,ZHAO Haichuan,LI Huanan,et al.Effects of Straw Biochar and Microbial Agent on Heavy Metals and Antibiotics in Soil[J].Northern Horticulture,2024,(18):84-91.[doi:10.11937/bfyy.20234207]
秸秆生物炭与生物菌剂协同处理对土壤中重金属和抗生素的影响
- Title:
- Effects of Straw Biochar and Microbial Agent on Heavy Metals and Antibiotics in Soil
- 文章编号:
- 1001-0009(2024)18-0084-08
- Keywords:
- straw biochar; microbial agents; heavy metal; antibiotics; synergistic effect
- 分类号:
- X 172
- 文献标志码:
- A
- 摘要:
- 以秸秆生物炭(S)和微生物菌剂(MA)为试材,采用高锰酸钾滴定、氨释放量、氯仿熏蒸-浸提法、PCR方法,研究了秸秆生物炭与生物剂(SM)协同处理对土壤的性质、酶活性、微生物量的影响,以及对铅(Pb)、镉(Cd)及其抗性基因(MRGs)、四环素(T)和抗生素抗性基因(ARGs)去除,以期为实现以废治废、优化资源的研究提供参考依据。结果表明:施用SM后,土壤的总有机碳(TOC)、总氮(TN)、总磷(TP)、速效磷(AP)得到有效的改善。过氧化氢酶(CAT)、脲酶(URE)、蔗糖酶(SUC)的活性分别比对照(CK)提高了36.00%、45.00%、53.00%。微生物碳(MBC)和微生物氮(MBN)、微生物磷(MBP)也得到相应的变化。Cd-Pb-SM组与Cd-Pb组相比,Cd、Pb的修复率分别为35.49%和20.09%;Cd-Pb-T-SM组与Cd-Pb-T组相比,Cd、Pb修复率分别为23.69%和25.57%。Cd-Pb-SM组与Cd-Pb组相比,cad D、pbrT的修复率分别为31.94%和30.11%;Cd-Pb-T-SM组与Cd-Pb-T组相比,cad D、pbrT修复率分别为29.19%和35.74%。T-SM、Cd-T-SM、Pb-T-SM、Pb-Cd-T-SM组与对应的T、Cd-T、Pb-T、Pb-Cd-T组相比,T的修复率分别为23.83%、24.03%、10.85%和19.08%;Cd-Pb-T-SM组与Cd-Pb-T组相比,tet A、tet M分别减少30.32%和31.71%。综上,秸秆生物炭协同生物菌剂可有效地改善土壤的结构和循环,促进土壤的酶活性,对重金属、抗生素的单一和多重污染均产生良好的消减作用。
- Abstract:
- Taking the straw biochar (S) and microbial agents (MA) as the test material,the effects of SM synergistic treatment on soil properties,enzyme activities and microbial biomass were studied.Meantime,the removal of Pb,Cd,MRGs,antibiotic and ARGs were detected by titration,chloroform fumigation-extraction and PCR.Through the above researches,the foundation of realizing waste treatment and optimizing resources would been laid.The results showd that compared with CK,the TOC,TN,TP and AP in soil were significantly improved with SM.The activities of catalase,urease and invertase in soil with SM were increased by 36.00%,45.00% and 53.00%,respectively.MBC,MBN and MBP in siol were also increased.In Cd-Pb-SM and Cd-Pb-T-SM groups,the residual of Cd and Pb were reduced to 35.49% and 20.09%,respectively.While the repair rates of Cd and Pb were 23.69% and 25.57% in Cd-Pb-T-SM and Cd-Pb-T group,respectively.Compared with Cd-Pb group,the cad D and pbrT of Cd-Pb-SM group were decreased by 31.94% and 30.11%,respectively.While those of Cd-Pb-T-SM group were decreased by 29.19% and 35.74%,respectively.Compared T,Cd-T,Pb-T,Pb-Cd-T groups with T-SM,Cd-T-SM,Pb-T-SM,Pb-Cd-T-SM,Pb-Cd-T-SM groups,the residues of tetracycline were increased towere 23.83%,24.03%,10.85%,19.08%,respectively.Compared Cd-Pb-T-SM with Cd-Pb-T-SM group,tet A and tet M were decreased to 30.32% and 31.71%,respectively.In conclusion,all results had showed that the straw biochar combined with microbial agent could effectively improved soil structure and circulation,promoted soil enzyme activity.Meamtime,these also had been effected on multi-pollution of heavy metals and antibiotics.
参考文献/References:
[1]杨传文,邢帆,朱建春,等.中国秸秆资源的时空分布、利用现状与碳减排潜力[J].环境科学,2023,44(2):1149-1162.[2]张静,崔向新,岳征文,等.矿区铜污染治理中秸秆生物炭吸附性能影响因子研究[J].北方园艺,2017,39(19):143-149.[3]吕凤莲,梁凯霖,吉冰洁,等.基于酶化学计量法探究有机无机肥配施调控果园土壤微生物碳、磷代谢机制[J].环境科学,2023,44(10):5788-5799.[4]王峥宇,廉宏利,孙悦,等.秸秆还田深度对春玉米农田土壤有机碳、氮含量和土壤酶活性的影响[J].农业资源与环境学报,2021,38(4):636-646.[5]LIU Y,TIE B,PENG O,et al.Inoculation of Cd-contaminated paddy soil with biochar-supported microbial cell composite:A novel approach to reducing cadmium accumulation in rice grains[J].Chemosphere,2020,247:125850.[6]AWASTHI M K,DUAN Y,AWASTHI S K,et al.Emerging applications of biochar:Improving pig manure composting and attenuation of heavy metal mobility in mature compost[J].Journal of Hazardous Materials,2020,389:122116.[7]原韬,安琦,刘佳莉,等.玉米秸秆堆腐菌株对堆腐过程中生物多样性的影响[J].北方园艺,2023(17):78-85.[8]聂扬眉,步连燕,陈文峰,等.高量秸秆还田配施芽孢杆菌对沙化土壤细菌群落及肥力的影响[J].环境科学,2023,44(9):5176-5185.[9]YUAN P,WANG J,PAN Y,et al.Review of biochar for the management of contaminated soil:Preparation,application and prospect[J].Science of the Total Environment,2019,659:473-490.[10]刘玉玲,朱虎成,彭鸥,等.玉米秸秆生物炭固化细菌对镉砷吸附[J].环境科学,2020,41(9):4322-4332.[11]中华人民共和国农业农村部.土壤中四环素类、氟喹诺酮类、磺胺类、大环内酯类和氯霉素类抗生素含量同步检测方法 高效液相色谱法:NY/T 3787-2020[S].北京:中国农业出版社,2020.[12]王红萍,步连燕,陈文峰,等.功能菌剂与生物炭配施对沙化土壤的影响[J].水土保持学报,2023,37(1):345-353.[13]QIAO C,RYAN PENTON C,LIU C,et al.Key extracellular enzymes triggered high-efficiency composting associated with bacterial community succession[J].Bioresource Technology,2019,288:121576.[14]金明兰,王悦宏,郝新瑞,等.四环素类和磺胺类双重抗生素抗性菌的特性[J].科学技术与工程,2020,20(31):13067-13071.[15]LIU Y,WACHEMO A C,YUAN H,et al.Anaerobic digestion performance and microbial community structure of corn stover in three-stage continuously stirred tank reactors[J].Bioresource Technology,2019,287:121339.[16]靳玉婷,李先藩,蔡影,等.秸秆还田配施化肥对稻-油轮作土壤酶活性及微生物群落结构的影响[J].环境科学,2021,42(8):3985-3996.[17]朱晓丽,李雪,寇志健,等.生物炭基硫酸盐还原菌(SRB)对 Cr(Ⅵ)的吸附效应及作用机制[J].农业环境科学学报,2021,40(4):866-875.[18]冯丽蓉,校亮,袁国栋,等.原料和制炭方式对生物炭吸附抗生素的影响[J].中国环境科学,2020,40(3):1156-1165.[19]PERIYASAMY S,KARTHIK V,SENTHIL K P,et al.Chemical,physical and biological methods to convert lignocellulosic waste into value-added products.A review[J].Environmental Chemistry Letters,2022,20(2):1129-1152.[20]XU M,STEDTFELD R D,WANG F,et al.Composting increased persistence of manure-borne antibiotic resistance genes in soils with different fertilization history[J].Science of the Total Environment,2019,689:1172-1180.[21]LIU H T,GUO X X.Hydroxyapatite reduces potential Cadmium risk by amendment of sludge compost to turf-grass grown soil in a consecutive two-year study[J].Science of the Total Environment,2019,661:48-54.[22]杨彬彬.秸秆降解与土壤污染生物修复耦合过程的研究[D].杭州:浙江大学,2021.[23]ZHAO X,SHEN J P,ZHANG L M,et al.Arsenic and cadmium as predominant factors shaping the distribution patterns of antibiotic resistance genes in polluted paddy soils[J].Journal of Hazardous Materials,2020,389:121838.[24]ALFADIL A A,XIA J H,SHAGHALEH H,et al.Wheat straw biochar application improves the morphological,physiological,and yield attributes of maize and the physicochemical properties of soil under deficit irrigation and salinity stress[J].Journal of Plant Nutrition,2021,44(16):2399-2420.
相似文献/References:
[1]曹云娥,雍海燕,张振兴.不同微生物发酵菌剂对农业有机废料发酵效果研究[J].北方园艺,2012,36(01):144.
CAO Yun-e,YONG Hai-yan,ZHANG Zhen-xing.Inoculating Effects of Different Microorganism Agents on Composting of Agriculture Wasted-organic Matter[J].Northern Horticulture,2012,36(18):144.
[2]朱英,孙权,司海丽,等.微生物菌剂对设施番茄幼苗生长的影响[J].北方园艺,2013,37(19):55.
ZHU Ying,SUN Quan,SI Hai-li,et al.Effect of Microbial Agents on Tomato Seedling Growth in Greenhouse[J].Northern Horticulture,2013,37(18):55.
[3]康萍芝,张丽荣,张华普,等.不同微生物菌剂对设施瓜菜根围土壤微生物的生态效应及其促生防病作用[J].北方园艺,2013,37(21):132.
KANG Ping-zhi,ZHANG Li-rong,ZHANG Hua-pu,et al.Ecological Effect of Different Microbial Agents on Rhizosphere Soil Microbes in Facilities Vegetables and Their Growth Promotion and Disease Prevention Function[J].Northern Horticulture,2013,37(18):132.
[4]于 恩 晶,高 丽 红,陈 青 云.微生物菌剂与有机肥配施对日光温室 小白菜产量和品质的影响[J].北方园艺,2010,34(07):0.[doi:10.11937/bfyy.201007021]
YU En -jing,GAO L- i hong,CHEN Qing -yun.Cooperating Application Effects of Microorganism Inoculant and Organic Fertilizer on the Yield and Quality of Pak -choi[J].Northern Horticulture,2010,34(18):0.[doi:10.11937/bfyy.201007021]
[5]张力飞,赵希彦,刘衍芬,等.不同微生物菌剂处理的猪场沼液在温室无花果上的应用[J].北方园艺,2015,39(10):147.[doi:10.11937/bfyy.201510037]
ZHANG Li-fei,ZHAO Xi-yan,LIU Yan-fen,et al.Application of Microbial Treatment of Piggery Biogas Slurry on Ficus carica in Greenhouse[J].Northern Horticulture,2015,39(18):147.[doi:10.11937/bfyy.201510037]
[6]冯红梅,秦永胜,李筱帆,等.添加菌剂和鸡粪对园林废弃物堆肥效果的影响[J].北方园艺,2015,39(15):156.[doi:10.11937/bfyy.201515042]
FENG Hongmei,QIN Yongsheng,LI Xiaofan,et al.Effect of Microorganism Agents and Chicken Manure on Composting of Garden Wastes[J].Northern Horticulture,2015,39(18):156.[doi:10.11937/bfyy.201515042]
[7]刘 瑞 伟,皇 传 华,王 磊.E M 发酵有机肥对油菜生物性状及重金属含量的影响[J].北方园艺,2010,34(17):0.[doi:10.11937/bfyy.201017011]
,f f e c t o f E M F e r m e n t e d O r g a n i c F e r t i l i z e r o n C o n t e n t o f H e a v yM e t a l a n d N i t r a t e o f R a p e s e e d[J].Northern Horticulture,2010,34(18):0.[doi:10.11937/bfyy.201017011]
[8]王 涛,李 剑,覃 娟,等.几种微生物菌剂处理下连作黄瓜的生长分析[J].北方园艺,2010,34(18):0.[doi:10.11937/bfyy.201018005]
,,et al.G r o w t h A n a l y s i s o f C o n t i n u o u s C r o p p i n g C u c u m b e r U n d e r M i c r o b i a l F e r t i l i z e r T r e a t m e n t s[J].Northern Horticulture,2010,34(18):0.[doi:10.11937/bfyy.201018005]
[9]张冬梅,高振江,高娃,等.微生物菌剂防治茄子黄萎病田间药效试验[J].北方园艺,2016,40(01):95.[doi:10.11937/bfyy.201601025]
ZHANG Dongmei,GAO Zhenjiang,GAO Wa,et al.Field Efficiency Trials of Microbial Fertilizer Against Verticillium dahliae Kled.of Eggplant[J].Northern Horticulture,2016,40(18):95.[doi:10.11937/bfyy.201601025]
[10]张会会,史娟,王俊,等.不同微生物菌剂和生物有机肥对黄芪地下生长量及根腐病的影响[J].北方园艺,2016,40(01):140.[doi:10.11937/bfyy.201601037]
ZHANG Huihui,SHI Juan,WANG Jun,et al.Effect of Different Microbial Agents and Biological Organic Fertilizer on Root Growth and Root Rot Underground of Astragalus[J].Northern Horticulture,2016,40(18):140.[doi:10.11937/bfyy.201601037]
备注/Memo
第一作者简介:金明兰(1968-),女,博士,研究员,现主要从事环境污染控制与资源化利用等研究工作。E-mail:jinminglan68@126.com.基金项目:大学生创新创业资助项目(G202310191026);吉林省科技厅资助项目(20220203010SF,20240404060ZP);吉林省教育厅科研资助项目(JJKH20240390KJ)。收稿日期:2023-12-03