YIN Yarui,WU Junkai,WANG Haijing,et al.Cloning and Expression Analysis of [STBX]PpTIFY10b[STBZ] Gene in Peach Fruit[J].Northern Horticulture,2020,44(22):23-30.[doi:10.11937/bfyy.20200189]
桃果实PpTIFY10b基因的克隆与表达分析
- Title:
- Cloning and Expression Analysis of [STBX]PpTIFY10b[STBZ] Gene in Peach Fruit
- 关键词:
- 桃; [STBX]PpTIFY10b[STBZ]基因; 克隆; 组织表达
- Keywords:
- Prumus persica; [STBX]PpTIFY10b[STBZ] gene; cloning; tissue expression
- 文献标志码:
- A
- 摘要:
- 采用同源克隆方法从‘京红’桃及其晚熟芽变果实中克隆出[STBX]PpTIFY10b[STBZ]基因,初步分析了该基因的理化性质,并利用荧光定量PCR(RT-PCR)分析了该基因在‘京红’桃以及其突变体中的表达情况,以期揭示桃果实成熟机制提供基本数据支持。结果表明:该基因开放阅读框为639 bp,编码213个氨基酸,等电点为9.04,为以丝氨酸为主的亲水性不稳定蛋白。同源性比对和结构分析表明,该基因与其它植物TIFY10b蛋白具有较高的相似性,其中与梅的一致性最高,均含有1个TIFY功能结构域和1个CCT基序。荧光定量PCR结果表明,该基因在桃及其晚熟芽变果实的生理成熟期表达量最高,但二者的表达规律有显著差异,即晚熟芽变在S1、S4时期的基因表达量上调,且明显高于‘京红’,表明[STBX]PpTIFY10b[STBZ]基因参与了果实成熟调控。该研究为了解桃果实成熟期调控机制提供了新颖的理论数据。
- Abstract:
- In order to further clarify the resistance mechanism of peach,determine the resistance-related gene [STBX]PpTIFY10b[STBZ],preliminarily explore the function of this gene in peach growth,[STBX]PpTIFY10b[STBZ] gene was cloned from the fruits of ‘Jinghong’ peach and its mutants by homologous cloning technology,and its quantitative expression and bioinformatics analysis were carried out.Flourescence quantitative PCR was used to anylyze the expression of the gene in ‘Jinghong’ peach and its mutants and provide data support for further revealing the resistance mechanism of peach.The results showed that the open reading frame of the gene was 639 bp,encoding 213 amino acids,and theoretical pI was 9.04.It was a hydrophilic unstable protein mainly composed of serine.Homology comparison and structural analysis revealed that TIFY10b protein had high similarity with other plant proteins,and had the highest consistency with Prunus mume.It contained a TIFY functional domain and a CCT motif.The results of quantitative fluorescence PCR showed that the expression of the gene was the higherin the physiological maturity stage of the two peaches,but there was a significant difference between them.That meant the gene expression of bud mutant lines was up-regulated at the S1 and S4 stages,and was significantly higher than that of ‘Jinghong’ peaches.The results of this study provided biological information support for understanding the research of peach in abiotic stress.
参考文献/References:
[1]ZHU D,LI R,LIU X,et al.The positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress[J].PLoS One,2014,9(11):e111984.[2]VANHOLME B,GRUNEWALD W,BATEMAN A,et al.The tify family previously known as ZIM[J].Trends in Plant Science,2007,12(6):239-244.[3]BAI Y H,MENG Y J,HUANG D L.et al.Qrigin and evolutionary analysis of theplant-specific TlFY transcription factor family[J].Genomics,2011,98(2):128-136.[4]ZHU D,BAI X,LUO X,et al.Identification of wiId soybean (Glycine saja) TIFY famnily genes and their expression profing analysis under bicarbonate stess[J].Plant Cell Rep,2013,32(2):263-272.[5]ZOU J,LIU C,LIU A,et al.Over expression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice[J].Journal Plant Physiol,2012,169(6):628-635.[6]YAMAGUCHi-SHINOZAKI K,SHINOZAKI K.Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J].Annu Rev Plant Biol,2006,57:781-803.[7]PAGTER M,ARORA R.Winter survival and deacclimation of perennials under warming climate:Physiological perspectives[J].Physiologia Plantarum,2013,147(1):75-87.[8]刘跃林.水稻逆境应答基因[STBX]Ostify10b[STBZ]的克隆与分析[D].雅安:四川农业大学,2012.[9]周明.玉米TIFY/JAZ蛋白全基因组分析[D].雅安:四川农业大学,2013.[10]李肖琴.苹果醛脱氢酶(ALDH)和TIFY基因家族的鉴定、系统进化及表达分析[D].杨凌:西北农林科技大学,2014.[11]ZHANG F,KE J,ZHANG L,et al.Structural insights into alternative splicing-mediated desensitization of jasmonate signaling[J].Proc Natl Acad Sci USA,2017,114(7):1720-1725.[12]黄小贞,曾晓芳,李建容,等.基于CRISPR/Cas9技术的水稻转录因子tify1a和tify1b突变体的创建与分析[J].农业生物技术学报,2017,25(6):147-156.[13]罗冬兰,巴良杰,陈建业,等.香蕉MaTIFY1转录因子特性及其在成熟过程中基因表达分析[J].园艺学报,2017,44(1):48-57.[14]金睦皓,毛双,刘鹏凌.我国桃产业出口贸易的现状分析及应对策略[J].江苏农业科学,2019,47(12):334-338.[15]HUANG R,LI W,GUAN XW,et al.Molecular cloning and characterization of genes related to the ethylene signal transduction pathway in pomegranate (Punica granatum L.) under different temperature treatments[J].J Biosci,2019,44(6):137.[16]LI S,LI K,JU Z,et al.Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening[J].BMC Genomics,2016,17:36.[17]ZHENG C,YE M,SANG M,et al.A Regulatory Network for miR156-SPL Module in Arabidopsis thaliana[J].Int J Mol Sci,2019,20(24):E6166.[18]SHEN S,ZHANG Q,SHI Y,et al.Genome-wide analysis of the NAC domain transcription factor gene family in theobroma cacao[J].Genes (Basel),2020,11(1):35.[19]王小利.高羊茅春化和光周期调控相关基因的克隆及差异表达研究[D].雅安:四川农业大学,2010.[20]QI T,HUANG H,WU D,et al.Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J].Plant Cell,2014,26(3):1118-1133.[21]van DER DOES D,LEON-REYES A,KOORNNEEF A,et al.Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59[J].Plant Cell,2013,25(2):744-761.[22]OH Y,BALDWIN I T,GALIS I.A jasmonate ZIM-domain protein NaJAZd regulates floral jasmonic acid levels and counteracts flower abscission in Nicotiana attenuata plants[J].PLoS One,2013,8(2):e57868.[23]TODA Y,YOSHIDA M,HATTORI T,et al.RICE SALT SENSITIVE3 binding to bHLH and JAZ factors mediates control of cell wall plasticity in the root apex[J].Plant Signal Behav,2013,8(11):e26256.[24]TODA Y,TANAKA M,OGAWA D,et al.RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation[J].Plant Cell,2013,25(5):1709-1725.[25]HAKATA M,KURODA M,OHSUMI A,et al.Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem[J].Biosci Biotechnol Biochem,2012,76(11):2129-2134.[26]SONG S,QI T,FAN M,et al.The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development[J].PLoS Genet,2013,9(7):e1003653.[27]ISHIGA Y,ISHIGA T,UPPALAPATI S R,et al.Jasmonate ZIM-domain (JAZ) protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana[J].PLoS One,2013,8(9):e75728.[28]YE H,DU H,TANG N,et al.Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice[J].Plant Molecular Biolology,2009,71(3):291-305.[29]阎文飞,程凡升,姜新强,等.野大豆盐碱胁迫相关GsTIFY6B基因克隆及表达特性分析[J].华北农学报,2018,33(4):82-89.[30]FERNANDEZ-CALVO P,CHINI A,FERN NDEZ-BARBERO G,et al.The Arabidopsis bHL H transcription factors MYC3anol MYC4 are targets of JAZ repressors and act additivelywith MYC2 in the activation of jasmonate responses[J].Plant Cell,2011,23(2):701-715.[31]LI T,XU Y,ZHANG L,et al.The jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening[J].Plant Cell,2017,29(6):1316-1334.[32]LI T,JIANG Z,ZHANG L,et al.Apple (Malus domestica) MdERF2 negatively affectsethylenebiosynthesis during fruit ripening by suppressing MdACS1 transcription[J].Plant J,2016,88(5):735-748.[33]CAARLS L,PIETERSE C M,Van WEES S C.How salicylic acid takes transcriptional control over jasmonicacid signaling[J].Front Plant Sci,2015(6):170.[34]YANG C,LI L.Hormonal regulation inshade avoidance[J].Front Plant Sci,2017(8):1527.
相似文献/References:
[1]魏姗姗,刘兴菊,杨敏生,等.基于成熟期的桃品种遗传多样性SSR分析[J].北方园艺,2014,38(12):88.
WEI Shan-shan,LIU Xing-ju,YANG Min-sheng,et al.Genetic Diversity of SSR Analysis of Prunus persica Cultivars Based on Maturity[J].Northern Horticulture,2014,38(22):88.
[2]张海旺,陈海江,张学英,等.桃树脱锻炼期间电阻抗参数与抗寒性关系研究[J].北方园艺,2014,38(06):11.
ZHANG Hai-wang,CHEN Hai-jiang,ZHANG Xue-ying,et al.Study on Relationship Between Electrical Impedance Spectroscopy Parameters and Frost Hardiness in Peach Stem During Dehardening[J].Northern Horticulture,2014,38(22):11.
[3]王真,姜全,郭继英,等.桃新品种经济效益分析[J].北方园艺,2013,37(12):197.
WANG Zhen,JIANG Quan,GUO Ji-ying,et al.Analysis of Economic Benefit on New Peach Varieties[J].Northern Horticulture,2013,37(22):197.
[4]李文贵,邓家林,张全军,等.四川盆地不同地区‘90-4-33’桃需冷量研究[J].北方园艺,2013,37(05):28.
LI Wen-gui,DENG Jia-lin,ZHANG Quan-jun,et al.Study on Chilling Requirement of ‘90-4-33’ Peach in Three Areas of Sichuan Basin[J].Northern Horticulture,2013,37(22):28.
[5]李靖,陈栋,涂美艳,等.龙泉山脉桃主要病害发生现状及综合防治技术[J].北方园艺,2012,36(01):140.
LI Jing,CHEN Dong,TU Mei-yan,et al.General Situation and the Integrated Control Techniques of Peach’s Major Diseases in Longquan Mountains[J].Northern Horticulture,2012,36(22):140.
[6]涂美艳,陈栋,谢红江,等.四川盆地桃标准化建园技术[J].北方园艺,2012,36(02):45.
[J].Northern Horticulture,2012,36(22):45.
[7]王彩君,刘玉祥.新品系‘晚西妃’桃生物学特性及栽培技术要点[J].北方园艺,2012,36(02):49.
[J].Northern Horticulture,2012,36(22):49.
[8]李艳梅,韩文忠,姜全会,等.晚熟鲜食桃新品种“玉西红蜜”的选育与品种特性研究[J].北方园艺,2013,37(08):172.
LI Yan-mei,HAN Wen-zhong,JIANG Quan-hui,et al.Breeding and Research of the Characteristics of New Cultivar ‘Yuxihongmi’ Peach[J].Northern Horticulture,2013,37(22):172.
[9]曹辉,王峰.桃霉心病病原鉴定和药效试验[J].北方园艺,2012,36(03):136.
[10]杨颖,纪仁芬,顾志新,等.反光膜应用对桃果实品质的影响[J].北方园艺,2012,36(05):44.
YANG Ying,JI Ren-fen,GU Zhi-xin,et al.The Effect of the Reflecting Film Application on Fruit Quality of Peach[J].Northern Horticulture,2012,36(22):44.
备注/Memo
第一作者简介:殷亚蕊(1993-),女,硕士研究生,研究方向为果树遗传育种与分子生物学。E-mail:1174932343@qq.com.责任作者:张立彬(1962-),男,硕士,教授,硕士生导师,现主要从事果树遗传育种、果树种质资源与分子生物学等研究工作。E-mail:zhanglibin9364@163.com.基金项目:国家自然科学基金资助项目(31572093);河北省自然科学基金资助项目(C2016407110);河北省重点研发计划基金资助项目(16226313D)。收稿日期:2020-01-12