|Table of Contents|

Accumulation of Four Heavy Metals in Ten Species of Flower Shrubs in Beijing Road Green Space

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2019年13
Page:
87-93
Research Field:
Publishing date:

Info

Title:
Accumulation of Four Heavy Metals in Ten Species of Flower Shrubs in Beijing Road Green Space
Author(s):
TANG MinZHANG XinWANG Meixian
(Beijing Urban and Rural Ecological Environment Laboratory,Beijing Key Laboratory of Flower Germplasm Innovation and Breeding,National Engineering Research Center for Floriculture,College of Landscape Architecture,Beijing Forestry University,Beijing 100083)
Keywords:
Beijingroad green spaceheavy metalflower shrubenrichment factor
PACS:
-
DOI:
10.11937/bfyy.20190185
Abstract:
The contents of Cd,Pb,Zn and Cu in the annual or biennial branches,leaves and soils of 10 flower shrubs were determined by ICP-AES.The heavy metal enrichment coefficient of 10 flower shrubs was evaluated and analyzed,in order to provide theoretical basis for garden plants to repair heavy metal contaminated soil.The results showed that the contents of heavy metals in the same flower shrubs were Zn>Cu>Pb>Cd.The enrichment of Cd and Cu in the same flower shrubs organs were leaves>branches,while Pb and Zn were branches>leaves.The enrichment coefficients of different heavy metals in flower shrubs were different.The average enrichment coefficient of zinc was the highest,which was 0.50.The average enrichment coefficient of Cd,Pb and Cu were lower and similar,less than 0.25.The single enrichment coefficients of Cd,Pb,Zn and Cu in Hibiscus syriacus,Rosa chinensis,Syringa oblata and Amygdalus triloba were significantly higher than those in other flower shrubs (P<0.05).From the comprehensive enrichment coefficient,Syringa oblata had the strongest enrichment ability for four heavy metals.The results provided scientific basis and reference for pollution control and plant species selection in Beijing road green space or other sites.

References:

[1]王崇臣,黄忠臣,王鹏.北京四环公路两侧植物铅、镉污染现状调查[J].环境化学,2009,28(4):604-605.[2]任玉芬,王效科,欧阳志云,等.北京城区道路沉积物污染特性[J].生态学报,2013,8(8):2365-2371.[3]孙春媛,赵文吉,郑晓霞,等.北京城区土壤重金属空间分布及与降尘的关联性分析[J].中国科技论文,2016,11(9):1035-1040.[4]邢艳帅,乔冬梅,朱桂芬,等.土壤重金属污染及植物修复技术研究进展[J].中国农学通报,2014,30(17):208-214.[5]施翔,陈益泰,王树凤,等.3种木本植物在铅锌和铜矿砂中的生长及对重金属的吸收[J].生态学报,2011(7):1818-1826.[6]MOK H,MAJUMDER R,LAIDLAW W S,et al.Native Australian species are effective in extracting multiple heavy metals from biosolids[J].International Journal of Phytoremediation,2013,15(7):615-632.[7]张轩,赵俊程,吴子剑,等.六种木本植物对铅锌尾矿库重金属富集力的研究[J].湖南林业科技,2016,43(6):64-68.[8]ALAHABADI A,EHRAMPOUSH M H,MIRI M,et al.A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air[J].Chemosphere,2017,172:459-467.[9]齐丹卉,刘文胜.10种常见绿化树种重金属积累特性的研究[J].浙江林业科技,2014,34(6):55-58.[10]李彩霞,朱国强,彭坤.绿化带土壤重金属污染特征及植物富集研究[J].中南林业科技大学学报,2016,36(10):101-107.[11]YONGPISANPHOP J,BABELS,KRUATRACHUE M,et al.Hydroponic screening of fast-growing tree species for lead phytoremediation potential[J].Bulletin of Environmental Contamination and Toxicology,2017,99(4):518-523.[12]王成,郄光发,杨颖,等.高速路林带对车辆尾气重金属污染的屏障作用[J].林业科学,2007,43(3):1-7.[13]尹骏,柳云龙.上海市城郊土壤重金属空间分布及其污染评价[J].现代农业科技,2010(10):251-253.[14]栾以玲,姜志林,吴永刚.栖霞山矿区植物对重金属元素富集能力的探讨[J].南京林业大学学报(自然科学版),2008(6):69-72.[15]成杭新,李括,李敏,等.中国城市土壤化学元素的背景值与基准值[J].地学前缘,2014(3):265-306.[16]唐世荣.污染环境植物修复的原理和方法[M].北京:科学出版社,2006.[17]李欣,孙文,金政,等.燃煤火电厂周边土壤重金属污染状况及绿化树种对重金属的积累特性[J].上海交通大学学报(农业科学版),2016(4):21-29.[18]李涛,蒲韵婷,王全华.Mn、Cu和Zn在植物生长发育中的生理作用[J].河北农业科学,2008,12(6):12-15.[19]唐丽清,邱尔发,韩玉丽,等.不同径级国槐行道树重金属富集效能比较[J].生态学报,2015,35(16):5354-5362.[20]BROOKS R R.Copper and cobalt uptake by Haumaniastrum species[J].Plant Soil,1977,48:541-544.[21]王亚宇.乌鲁木齐市土壤重金属空间分布及行道树对重金属的富集特征[D].乌鲁木齐:新疆农业大学,2008.[22]王广林,张金池,庄家尧,等.31种花灌木对重金属的富集研究[J].皖西学院学报,2011(5):83-87.[23]张富运,陈永华,吴晓芙,等.8种木本植物对矿渣中重金属的吸收与富集研究[J].环境科学与管理,2014(3):168-170.[24]林晓燕,唐彪,熊云武,等.铅锌矿区土壤重金属含量及木本植物吸收特征[J].湖北农业科学,2016(18):4656-4659.[25]康薇,鲍建国,郑进,等.湖北铜绿山古铜矿遗址区木本植物对重金属富集能力的分析[J].植物资源与环境学报,2014(1):78-84.

Memo

Memo:
-
Last Update: 2019-08-02