|Table of Contents|

Effects of Exogenous ABA on Petunia hybrid Under Ozone Stress(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2018年04
Page:
96-102
Research Field:
Publishing date:

Info

Title:
Effects of Exogenous ABA on Petunia hybrid Under Ozone Stress
Author(s):
XIONG Donglan12YU Xiao2XU Sheng13DENG Lilan2HE Xingyuan1CHEN Wei1
1.Shenyang Institute of Applied Ecology,Chinese Academy of Sciences,Shenyang,Liaoning 110016;2.Faculty of Landscape Architecture,Southwest Forestry University,Kunming,Yunnan 650224;3.Key Laboratory of Forest Ecology and Management,Chinese Academy of Sciences,Shenyang,Liaoning 110016
Keywords:
ABAozoneantioxidant enzyme
PACS:
-
DOI:
10.11937/bfyy.20172409
Abstract:
As one of the main polluting gases in the atmosphere,ozone has attracted much attention.Abscisic acid (ABA),aosmoregulation substance,can regulate and improve the adaptability of plants to stress.In this study,Petunia hybrida was taken as materials,through the open top chamber (OTCs) simulation research in high concentration O3 (100 nmol?mol-1) fumigation,variation of foliar application of (5,30 μmol?L-1)ABA on resistance physiology of Petunia hybrida.The results showed that under ozone stress,the leaves of P.hybrida appeared water loss,shrinkage and water patch symptoms,and the symptoms decreased with the increase of spraying ABA concentration The content of photosynthetic pigment increased significantly,and the content of light and pigment treated with ABA was close to the control value.After spraying 5 μmol?L-1 and 30 μmol?L-1ABA,compared with the treatment with distilled water,the content of MDA in P.hybrida leaves decreased significantly (27.78%-55.22%),the activity of POD was increased by 11.53%-47.72%,the activity of SOD increased by 33.94%,the activity of CAT increased by 125.45%-525.00%,the soluble protein content decreased by 22.95%-23.02%,The above results showed that ABA effectively alleviated the damage of ozone to P.hybrida,but the injury degree increased with the increase of high concentration ozone fumigation time,and different varieties showed some differences.

References:

[1]〖JP2〗AGATHOKLEOUS E,MOUZAKI-PAXINOU A,SAITANIS C J,et al.The first toxicological study of the antiozonant and research tool ethylene diurea (EDU) using a Lemna minor L.bioassay:Hints to its mode of action[J].Environmental Pollution,2016,213:996-1006.

[2]MATYSSEK R,KOZOVITS A R,SCHNITZLER J P,et al.Forest trees under air pollution as a factor of climate change[M]// TAUSE M,GRULKE N.Trees in a changing environment.Netherlands:Springer,2014:117-163.
[3]〖JP2〗IPCC.Summary for policymakers[M]// STOCKER T F,QIN D,PLATTNER G K.Climate change 2013:The physical science basis.Cambridge:Cambridge University Press,2013.
[4]YAN K,HE X,CHEN W,et al.Variation of antioxidant system in Pinus armandii under elevated O3 in an entire growth season[J].Clean Soil Air Water,2013,41:5-10.
[5]XU S,HE X,CHEN W,et al.Elevated CO2 ameliorated theadverse effect of elevated O3 in previous-year and current-year needles of Pinus tabulaeformis in urban area[J].Bull Environ Contam Toxicol,2014,92:733-737.
[6]WANG X K,MANNIN G W,FENG Z W,et al.Ground-level ozone in China:Distribution and effects on crop yields[J].Environ.Pollut,2007,147:394-400.
[7]FENG Z,SUN J,WAN W,et al.Evidence of widespread ozone-induced visible injury on plants in Beijing[J].Chin Environ Pollut,2014,193:296-301.
[8]WANG L,HE X,CHEN W,et al.Effects of elevated ozone on photosynthetic CO2 exchange and chlorophyll a fluorescence in leaves of Quercus mongolica grown in urban area Bull[J].Enviro Contam Toxicol,2009,82:478-481.
[9]HE X Y,FU S L,CHEN W,et al.Changes in effects of ozone exposure on growth,photosynthesis,and respiration of Ginkgo biloba in Shenyang urban area[J].Photosynthetica,2007,45:555-561.
[10]KITAOM,LW M,HEERDT C,et al.Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient[J].Environ Pollut,2009,157:537-544.
[11]XU S,HE X,CHEN W,et al.Differential sensitivity of four urban tree species to elevated O3[J].Urban Forestry & Urban Greening,2015,14(4):1166-1173.
[12]郝格格,孙忠富,张录强,等.脱落酸在植物逆境胁迫研究中的进展[J].中国农学通报,2009,25(18):212-215.
[13]赵诣,徐胜,何兴元,等.三种冷季型草坪草对高浓度O3的生理响应[J].生态学杂志,2014,33(12):3203-3208.
[14]吴丹.地面臭氧污染对树木叶片组织结构的影响[D].北京:北京林业大学,2016.
[15]BLACKMAN P D,DAVIES W J.Rootto shoot communication in maize plants of the effets of soil drying[J].EXP Bot,1985,36:39-48.
[16]ZWIAZEK J J,BLKAE T J.Effects of preconditioning on subsequent water relations,stomatal sensitivity,and photosynthesis isostatically stressed black spurce[J].Can J Bot,1989,67:2240-2244.
[17]MAGGIO A,CHIARAND F Q,CEFARIELLO R,et al.Responses to ozone pollution of alfalfa exposed to increasing salinity levels[J].Environmental Pollution,2009,157(5):1445-1452.
[18]DOWNTON W J,LOVEYS B R,GRANT W J R.Stomatal closure fully account for the inhibition of photosynthesis by abscisic acid[J].New Phytologist,1988,108:263-266.
[19]JEONG Y H,NAKAMURA H,OTA Y.Physiological studies on photochemical oxidants injury in rice plants:Varietal difference of abscisic acid content and its relation to resistance to ozone[J].Jpn J Crop,1980,49:456-460.
[20]LIN D I,LUR H S,CHU C.Effects of abscisic acid on ozone tolerance of rice (Oryza sativa L.) seedlings[J].Plant Growth Regulation,2001,35(3):295-300.
[21]吴耀荣,谢旗.ABA与植物胁迫抗性[J].植物学通报,2006(5):511-518.
[22]陈娟,潘开文,辜彬.逆境胁迫下植物体内脱落酸的生理功能和作用机制[J].植物生理学通讯,2006,57(6):1176-1182.
[23]李雪梅,张利红,何兴元,等.脱落酸对UV-C胁迫下小麦幼苗光合特性及抗氧化酶活性的影响[J].应用生态学报,2006(5):822-826.
[24]XIN Y,YUAN X,SHANG B,et al.Moderate drought did not affect the effectiveness of ethylenediurea (EDU) in protecting Populus cathayana from ambient ozone[J].Science of the Total Environment,2016,569-570:1536-1544.
[25]徐胜,何兴元,陈玮,等.高浓度O3对树木生理生态的影响[J].生态学报,2009,29(1):368-377.
[26]郑启伟,王效科,冯兆忠,等.臭氧对原位条件下冬小麦叶片光合色素脂质过氧化的影响[J].西北植物学报,2005,25(11):2240-2244.
[27]NORA H,MARIA A,CHRISTIAN H,et al.Seasonal differences and within-canopy variations of antioxidants in mature spruce(Picea abies) trees under elevated ozone in a free-air exposure system[J].Environmental Pollution,2008,154:241-253.
[28]WOLFF S,GARNER A,DEANR,et al.lipids and proteindegradation[J].Trends in Biochemical Sciences,1986,11(1):27-31.
[29]ASADAK,TAKAHASHI M.Production and scavenging of active oxygen in photosynthesis[J].Amsterdam:Elsevier,1987:227-288.
[30]黄玉源,黄益宗,李秋霞,等.臭氧对南方3种木本植物的急性伤害症状及其生理指标变化[J].生态环境,2006,15(4):674-681.
[31]张巍巍,郑飞翔,王效科,等.大气臭氧浓度升高对水稻叶片膜脂过氧化及保护酶活性的影响[J].应用生态学报,2008,19(11):2485-2489.
[32]PELL E,SCHLAGNHAUFER C D,ARTECA R N,et al.Ozone-induced oxidative stress:Mechanisms of action and reaction[J].Physiologia Plantarum,1997,100:264-273.
[33]阮亚男,何兴元,陈玮,等.臭氧浓度升高对植物抗氧化系统的影响[J].生态学杂志,2008,27(5):829-834.
[34]赵天宏,刘波,王岩,等.臭氧胁迫对大豆根系激素含量和活性氧代谢的影响[J].干旱地区农业研究,2013,31(4):119-123.
[35]CALATAYUD A,RAMIREZ J W,IFLESIAS D J,et al.Effects of ozone on photosynthetic CO2 exchange,chlorophyll a fluorescence and antioxidant systems in lettuce leaves[J].Physiol Plant,2002,116:308-316.
[36]金明红,冯宗炜,张福珠.臭氧对水稻叶片膜脂过氧化和抗氧化系统的影响[J].环境科学,2000,1(3):1-5.
[37]HAUSLADEN A,MADAMANCHI N R,FELLOWS S,et al.Seasonal changes in antioxidants in red spruce as affected by ozone[J].New Phytol,1990,115:447-458.
[38]颜坤.蒙古栎和华山松活性氧代谢对CO2和O3浓度升高的响应[D].北京:中国科学院,2010.
[39]张会.脱落酸在植物抗性生理中的作用[J].安徽农业科学,2013,41(2):490-491.
[40]隋立华,黄益宗,王玮,等.臭氧胁迫下外源喷施亚精胺和EDU对小麦生理指标的影响[J].生态毒理学报,2012,7(1):71-78.
[41]张巍巍,郑飞翔,王效科,等.臭氧对水稻根系活力、可溶性蛋白质含量与抗氧化系统的影响[J].植物生态学报,2009,33(3):425-432.

Memo

Memo:
-
Last Update: 2018-02-24