|Table of Contents|

Sequence Analysis of Polyphenol Oxidase in Tubiflorae Plants and Function Prediction(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2016年12
Page:
85-91
Research Field:
Publishing date:

Info

Title:
Sequence Analysis of Polyphenol Oxidase in Tubiflorae Plants and Function Prediction
Author(s):
GUO HongboSUN YiyueSHU ZhimingLIANG ZongsuoZHANG Yuejin
(State Key Laboratory of Crop Stress Biology for Arid Areas/College of Life Sciences,Northwest Agricultural and Forestry University,Yangling,Shaanxi 712100)
Keywords:
TubifloraeSalvia miltiorrhizapolyphenol oxidasesequence analysisfunction prediction
PACS:
-
DOI:
10.11937/bfyy.201612022
Abstract:
The sequences of seven polyphenol oxidase genes(PPO)in five species of Tubiflorae was analyzed by using the methods of sequence comparison and functional domain prediction.The number of bases and amino acids,and six functional sites including protein kinase C phosphorylation site,casein kinase II phosphorylation site,N-myristoylation,N-glycosylation,amidation site and cAMP-and cGMP-dependent protein kinase phosphorylation site,were analyzed to discover those regulation sites of PPO.The results showed that among Tubiflorae plants,PPO gene cloned from hair roots of Salvia miltiorrhiza Bunge(SmPPO)had the most G+C bases.The highest content of alanine and leucine(16.9%)was found in its amino acid sequences(SmPPO),as well as the most casein kinase II phosphorylation sites(11).No signal peptide was found in SmPPO,but it existed a coiled coil.The SmPPO was a hydrophilic protein but no trans-membrane domain.This work provided foundation to investigate the molecular mechanism how PPO regulated the accumulation of phenolics,sepecially for interaction between protein and protein,protein and gene.

References:

 

[1]KOJIMA M,TAKEUCHI W.Detection and characterization of p-coumaric acid hydroxylase in mung bean,Vigna mungo,seedlings[J].J Biochem,1989,105:265-270.

[2]CONSTABEL C P,BERGEY D R,RYAN C A.Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway[J].Proc Natl Acad Sci USA,1995,92:407-411.

[3]THIPYAPONG P,STEFFENS J C.Tomato polyphenol oxidase:differential response of the polyphenol oxidase F promoter to injuries and wound signals[J].Plant Physiol,1997,115:409-418.

[4]王曼玲,胡中立,周明全,.植物多酚氧化酶的研究进展[J].植物学通报,2005,22(2):215-222.

[5]MAHANIL S,ATTAJARUSIT J,STOUT M J,et al.Overexpression of tomato polyphenol oxidase increase resistance to common cutworm[J].Plant Sci,2008,174:456-466.

[6]宛国伟,董娟娥,梁宗锁,.培养条件对离体丹参根苯丙氨酸解氨酶和多酚氧化酶活性的影响[J].西北植物学报,2007,27(12):2471-2477.

[7]孙奕玥.丹参多酚氧化酶基因的克隆及其表达分析[D].杨凌:西北农林科技大学,2014.

[8]THIPYAPONG P,HUNT M D,STEFFENS J C.Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility[J].Planta,2004,220:105-107.

[9]THIPYAPONG P,MELKONIAN J,WOLFE D W,et al.Suppression of polyphenol oxidase increases stress tolerance in tomato[J].Plant Sci,2004,167:693-703.

[10]KUC J.Induced immunity to plant disease[J].Bioscience,1982,32(11):854-860.

[11]THYGESEN P W,DRY I B,ROBINSON S P.Polyphenol oxidase in potato.A multigene family that exhibits differential expression patterns[J].Plant Physiol,1995,109:525-531.

[12]张跃进,郝晓燕,梁宗锁,.莲藕多酚氧化酶基因(PPO)的克隆与表达分析[J].农业生物技术学报,2011,19(4):634-641.

[13]SOMMER A,NEEMAN E,STEFFENS J C,et al.Import,targeting,and processing of a plant polyphenol oxidase[J].Plant Physiol,1994,105:1301-1311.

[14]TRAN L T,TAYLOR J S,CONSTABEL C P.The polyphenol oxidase gene family in land plants:lineage-specific duplication and expansion[J].BMC Genomics,2012,13:395.

[15]de BOER A D,WEISBEEK P J.Chloroplast protein topogenesis:import,sorting and assembly[J].Biochim Biophysic Acta,1991,1071:221-253.

[16]VON HEIJNE G,STEPPUHN J,HERRMANN R G.Domain structure of mitochondrial and chloroplast targeting peptides[J].Eur J Biochem,1989,180:535-545.

[17]ROBINSON C,BOOLHUIS A.Protein targeting by the twin-arginine translocation pathway[J].Nat Rev Mol Cell Biol,2001,2:350-356.

[18]ZHA J,WEILER S,OH K J,et al.Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis[J].Science,2000,290:1761-1765.

[19]KLABUNDE T,EICKEN C,SACCHETTINI J C,et al.Crystal structure of a plant catechol oxidase containing a dicopper center[J].Nat Struct Mol Biol,1998,5:1084-1090.

[20]彭益强,邓峰,刘宇,.富士苹果中多酚氧化酶活性的中心必需基团与抑制动力学[J].华侨大学学报(自然科学版),2012,33(1):51-54.

[21]韦朝领,江昌俊,陶汉之,.植物紫黄素脱环氧化酶结构特征的生物信息学分析[J].安徽农业大学学报,2002,29(3):250-255.

[22]NEWTON A C.Protein kinese C:structure,function,and regulation[J].J Biol Chem,1995,270:28495-28498.

[23]GAO Y,WANG H Y.Casein kinase 2 is activated and essential for Wnt/beta-catenin signaling[J].J Biol Chem,2006,281(27):18394-18400.

[24]MARUSEK C M,TROBOUGH N M,FLURKEY W H,et al.Comparative analysis of polyphenol oxidase from plant and fungal species[J].J Inorg Chem,2006,100:108-123.

[25]ROBINSON S P,DRY I B.Broad bean leaf polyphenol oxidase is a 60-kilodalton protein susceptible to proteolytic cleavage[J].Plant Physiol,1992,99:317-323.

[26]潘宇,王坤波,徐仲溪,.茶叶多酚氧化酶的序列分析与结构预测[J].茶叶科学,2008,28(3):157-165.

[27]RATHJEN A H,ROBINSON S P.Aberrant processing of polyphenol oxidase in a variegated grapevine mutant[J].Plant Physiol,1992,99:1619-1625.

[28]STEFFENS J C,HAREL E,HUNT M D.Polyphenol oxidase[M]//ELLIS B E.Genetic engineering of plant secondary metabolism.New York:Plenum Press,1994:275-312.

[29]TORRES J,SVISTUNENKO D,KARLSSON B,et al.Fast reduction of a copper centre in laccase by nitric oxide and formation of a peroxide intermediate[J].J Amer Chem Soc,2002,124:963-967.

[30]易建勇,董鹏,王永涛,.应用SRCDFTIR分析超高压处理对蘑菇多酚氧化酶二级结构的影响[J].光谱学与光谱分析,2012,32(2):318-322.

[31]李春美,胡婉峰,杨立,.莲藕多酚氧化酶与底物或抑制剂相互作用的光谱学研究[J].分析实验室,2010,29(8):14-17.

[32]肖厚荣,徐小龙,解永树,.pH诱导烟草多酚氧化酶二级结构变化的光谱学研究[J].化学物理学报,2004,17(2):196-200.

Memo

Memo:
-
Last Update: 2016-07-21