|Table of Contents|

Research Progress on Response of Edible Fungi to High Temperature Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2025年6
Page:
136-141
Research Field:
Publishing date:

Info

Title:
Research Progress on Response of Edible Fungi to High Temperature Stress
Author(s):
LU Fang1MA Yinpeng1WANG Lei2SUN Yao2ZHANG Jiechi12
(1.Institute of Microbiology,Heilongjiang Academy of Sciences,Harbin,Heilongjiang 150010;2.Institute of Advanced Technology,Heilongjiang Academy of Sciences,Harbin,Heilongjiang 150001)
Keywords:
edible fungiheat stressmulti-omics
PACS:
S 646
DOI:
10.11937/bfyy.20243823
Abstract:
The important research progress in the field of high-temperature stress resistance in edible fungi in recent years,including changes in agronomic traits,physiological response mechanisms,gene expression regulation,and metabolic pathway reprogramming in response to high temperature stress were summarized.Multiple key genes and metabolic pathway regulation mechanisms have been discovered,and suggestions have been put forward to strengthen temperature adaptive breeding and optimize cultivation techniques,in order to provide more scientific and effective support for the production and application of edible mushrooms,and promote the sustainable development of the edible mushroom industry under high temperature stress.

References:

[1]王艺琴.脆木耳对干旱胁迫的生理响应及转录组分析[D].贵阳:贵州大学,2022.[2]HAN J,KAWAUCHI M,SCHIPHOF K,et al.Features of disruption mutants of genes encoding for hydrophobin Vmh2 and Vmh3 in mycelial formation and resistance to environmental stress in Pleurotus ostreatus[J].FEMS Microbiology Letters,2023,370:fnad036.[3]刘秀明,邬向丽,陈强,等.高温胁迫对刺芹侧耳菌丝生长及其抗棘孢木霉能力的影响[J].菌物学报,2017,36(11):1566-1574.[4]常婷婷,赵妍,杨焕玲,等.食药用菌高温胁迫应答研究进展[J].食用菌学报,2021,28(1):124-134.[5]张春格.环境温度对杏鲍菇呼吸和产量的生态影响机制研究[D].合肥:安徽农业大学,2017.[6]李雪芹.高温胁迫下红托竹荪生理响应及品质分析[D].贵阳:贵州大学,2023.[7]边银丙,肖扬,郭孟配.食用菌病害防控研究进展[J].食用菌学报,2021,28(5):121-131.[8]郝海波,黄建春,王倩,等.热胁迫对双孢蘑菇抗氧化酶及热激蛋白基因的差异表达的影响[J].菌物学报,2021,40(3):616-625.[9]王倩,黄建春,卜乐男,等.双孢蘑菇对高温胁迫的响应及耐热机理[J].菌物学报,2021,40(6):1400-1412.[10]马银鹏,孔祥辉,韩增华,等.黑木耳高温胁迫条件优化研究[J].中国食用菌,2021,40(1):32-35,41.[11]王红,刘岩岩,李红,等.菌包后熟期高温胁迫对黑木耳生理特性及生长发育的影响[J].食用菌学报,2022,29(5):33-42.[12]GUO Y,GAO Q,FAN Y,et al.Two strains of Lentinula edodesdiffer in their transcriptional and metabolic patterns and respond differently to thermostress[J].Journal of Fungi,2023,9(2):179.[13]游华芳,吴宸印,徐彦军,等.外源GABA对亚温胁迫马桑菌菌丝生理指标的影响[J].北方园艺,2023(4):111-117.[14]闫志宇.糙皮侧耳高温胁迫下的核心碳代谢响应[D].北京:中国农业科学院,2020.[15]WU T,LIU X,WANG T,et al.Heme oxygenase/carbon monoxide participates in the regulation of Ganoderma lucidumheat-stress response,ganoderic acid biosynthesis,and cell-wall integrity[J].International Journal of Molecular Sciences,2022,23(21):13147.[16]IANUTSEVICHE A,DANILOVA O A,ANTROPOVAA B,et al.Acquired thermotolerance,membrane lipids and osmolytes profiles of xerohalophilic fungus Aspergillus penicillioides under heat shock[J].Fungal Biology,2023,127(3):909-917.[17]刘月芹,白鹭,罗丽媛,等.促进灵芝酸合成的热胁迫条件的优化[J].北方园艺,2021(17):119-124.[18]张江萍,付丽娇,刘和.促进香菇多糖生物合成的热胁迫条件优化[J].食用菌学报,2018,25(1):42-46.[19]焦潇颖,田景花,高亚洁,等.皱环球盖菇菌丝体的耐热性及抗氧化酶对高温的响应[J].菌物学报,2024,43(6):111-120.[20]龚钰华,王刚正,罗义,等.分子伴侣DnaJ调控香菇菌丝耐热性分子机制研究[C].西安:中国菌物学会2019年学术年会,2019.[21]ZHANG H,HU H,WU S,et al.Effect of evolution of the C-terminal region on chaperone activity of Hsp70[J].Protein Science,2023,32(1):e4549.[22]MOTTA H,REUWSAAT J C V,SQUIZANI E D,et al.The small heat shock protein Hsp12.1 has a major role in the stress response and virulence of Cryptococcus gattii[J].Fungal Genetics and Biology,2023,165:103780.[23]HU X,TANG X,ZHOU Y,et al.Bioinformatics analysis,expression profiling,and functional characterization of heat shock proteins in Wolfi-Poria cocos[J].Bioengineering,2023,10(3):390.[24]LING Y Y,LING Z L,ZHAO R L.Construction of a heat-resistant strain of Lentinus edodes by fungal Hsp20 protein overexpression and genetic transformation[J].Frontiers in Microbiology,2022,13:1009885.[25]张美敬,刘秀明,邹亚杰,等.侧耳属食用菌高温胁迫条件优化研究[J].菌物学报,2015,34(4):662-669.[26]HU Y,CHAI Q,WANG Y,et al.Effects of heat stress and exogenous salicylic acid on secondary metabolites biosynthesis in Pleurotus ostreatus (jacq.) P.kumm[J].Life,2022,12(6):915.[27]决超,杨囡君,方庆.高温胁迫对平菇子实体脯氨酸积累的影响[J].安徽农业科学,2012,40(36):17453-17454.[28]王增妹,王金晶,李磊,等.外源海藻糖对啤酒酵母在热胁迫下的保护作用[J].食品与生物技术学报,2020,39(8):43-50.[29]王增妹.外源海藻糖对啤酒酵母生理性能影响的研究[D].无锡:江南大学,2019.[30]雷敏.热胁迫下糙皮侧耳菌丝体海藻糖代谢调控研究[D].北京:中国农业大学,2018.[31]刘秀明,黄晨阳,陈强,等.肺形侧耳高温后恢复期间海藻糖代谢途径研究[J].中国农业科学,2013,46(24):5188-5195.[32]白静,陈明杰,唐利华,等.温度对梯棱羊肚菌抗氧化酶活及其基因表达的影响[J].菌物学报,2021,40(12):3276-3285.[33]侯志浩.糙皮侧耳Zn2Cys6转录因子家族的表达分析及PoZCP26的功能研究[D].北京:中国农业科学院,2020.[34]DING Q,ZHAO H,ZHU P,et al.Genome-wide identification and expression analyses of C2H2 zinc finger transcription factors in Pleurotus ostreatus[J].PeerJ,2022,10:e12654.[35]YANG Y,XIE B,JING Z,et al.Flammulina filiformispkac gene complementing in Neurospora crassamutant reveals its function in mycelial growth and abiotic stress response[J].Life,2022,12(9):1336.[36]曹子健,胡宝,徐子昕,等.逆境胁迫下食用菌转录组学研究进展[J].北方园艺,2022(6):131-136.[37]梅焱朝.外源一氧化氮对金针菇高温胁迫伤害的缓解及机理研究[D].南京:南京农业大学,2015.[38]崔世瑞.皂苷与斑玉蕈抗氧化酶活性相关性及其转录水平上的初步分析[D].南京:南京农业大学,2015.[39]赵旭.基于多组学联合分析的香菇高温胁迫研究[D].合肥:中国科学技术大学,2019.[40]宋爽,荣成博,严冬,等.不同香菇栽培种质耐热性评价[J].北方园艺,2020(1):117-121.[41]ZHANG X,LI Y,FAN X,et al.Development and characterization of novelly grown fire-resistant fungal fibers[J].Scientific Reports,2022,12(1):10836.[42]ENRIGHTD J,FRANGIOSOK M,ISOBE K,et al.Mega-fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved[J].Molecular Ecology,2022,31(8):2475-2493.

Memo

Memo:
-
Last Update: 2025-04-03