|Table of Contents|

Study on the Drought Resistance of Four Liana Species

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2025年5
Page:
90-98
Research Field:
Publishing date:

Info

Title:
Study on the Drought Resistance of Four Liana Species
Author(s):
XIAN Lihua1WANG Linlang1FENG Jiayi2WENG Shufei1ZHANG Bo1
(1.College of Forestry and Landscape Architecture,South China Agricultural University,Guangzhou,Guangdong 510642;2.Guangdong Eco-engineering Polytechnic,Guangzhou,Guangdong 510520)
Keywords:
lianasdrought stressphotosynthetic characteristicsosmotic regulation
PACS:
S 688.4
DOI:
10.11937/bfyy.20241239
Abstract:
Taking Pyrostegia venusta,Mansoa alliaceae,Clerodendrum thomsonie,and Clerodendrum speciosum as test materials,a pot experiment was conducted to study the effects of sustained drought on the physiological and biochemical characteristics of different woody vines,in order to provide reference for the scientific application of these four woody vines in landscaping.The results showed that,1) mild drought treatment significantly increased water loss rate in wheat leaves of Pyrostegia venusta and Clerodendrum thomsonae by 44.74% and 83.47%,respectively,leading to leaf curling and subsequent leaf drop.But the rate of water loss followed a trend of initially rising,then falling,and finally rising again under a gradient of mild to moderate to severe drought stress,indicating that lianas could actively adapt to drought stress.This was confirmed by the observed increase in leaf soluble sugar,proline,and other osmotic adjustment substances,coupled with a decrease in malondialdehyde content during the same period.In particular,the chlorophyll a,chlorophyll b and carotenoid contents of Clerodendrum speciosum under drought stress were 8.07%-72.83% higher than those in the control group,indicating good photosynthetic ability and drought resistance.2) As the degree of drought increased,both Clerodendrum thomsonae and Clerodendrum speciosum mitigate drought stress by reducing their transpiration rate by 35.53%-62.93% and enhancing water use efficiency by 36.18%-173.83% through stomatal regulation.However,this adaptation also resulted in a reduction of plant height by 24.14%-67.02%.3) A comparative analysis revealed that Clerodendrum thomsonae and Clerodendrum speciosum exhibited better drought resistance than Pyrostegia venusta and Mansoa alliacea,making them were more suitable for using in dry garden greening environments.The drought resistance of Pyrostegia venusta,Mansoa alliacea was moderate,and it was recommended to be applied in the environment with relatively abundant soil water content.

References:

[1]王琳琅,翁殊斐,袁喆.广州园林木质藤本资源调查及其景观物候特点[J].中国园林,2015,31(7):64-67.[2]冼丽铧,翁殊斐,林熙迪,等.广州市公园棚架式植物景观评价[J].西北林学院学报,2019,34(1):261-266.[3]ANGYALOSSY V,ANGELES G,PACE M R,et al.An overview of the anatomy,development and evolution of the vascular system of lianas[J].Plant Ecology & Diversity,2012,5(2):167-182.[4]UMAA M N,FORERO-MONTAA J,NYTCH C J,et al.Dry conditions and disturbance promote Liana seedling survival and abundance[J].Ecology,2019,100(1):e02556.[5]MEDINA-VEGA J A,BONGERS F,POORTER L,et al.Lianas have more acquisitive traits than trees in a dry but not in a wet forest[J].Journal of Ecology,2021,109(6):2367-2384.[6]CHEN Y J,CAO K F,SCHNITZER S A,et al.Water-use advantage for lianas over trees in tropical seasonal forests[J].New Phytologist,2015,205(1):128-136.[7]范体凤.草质与木质藤本叶性状比较和干旱胁迫对其攀附生长的影响[D].广州:华南农业大学,2018.[8]寿海洋.木质藤本植物在上海园林中的应用现状及建议[J].中国园林,2017,33(1):78-82.[9]杨云峰,赵燕萍,吴家炜,等.南京市垂直绿化调查分析[J].北方园艺,2018(2):116-123.[10]ZHOU G,WEI X,WU Y,et al.Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China[J].Global Change Biology,2011,17(12):3736-3746.[11]杜铃,杨开太,李进华,等.南宁木质藤本植物园林应用探讨[J].西南林业大学学报(社会科学),2018,2(4):72-75.[12]刘菲,何友军,颜立红,等.3种豆科藤本植物抗旱性研究[J].中国农学通报,2014,30(7):28-32.[13]武金翠,田松青,薛荣荣,等.3种藤本植物对自然干旱胁迫的生理生化响应[J].贵州农业科学,2017,45(12):25-29.[14]周军,武金翠,杜宝明,等.4种藤本植物的抗旱性比较[J].江苏农业学报,2016,32(3):674-679.[15]邓沛怡,周杰良,陶抵辉,等.干旱胁迫对6种藤本植物光合作用及叶绿素荧光参数的影响[J].湖南农业大学学报(自然科学版),2015,41(3):263-270.[16]张朝阳,许桂芳,向佐湘.干旱胁迫对4种常绿藤本植物抗性生理生化指标的影响[J].江西农业学报,2008,20(12):42-45.[17]陈恒彬,陈榕生.厦门植物园紫葳科观赏藤本一览[J].中国花卉盆景,2008(8):22-24.[18]房用,孟振农,孙成南,等.山东省藤本植物资源现状及应用[J].林业科技开发,2003(6):10-12.[19]张哲,邓莉兰.紫葳科植物资源及其园林应用研究[J].现代园艺,2018(19):90-93.[20]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.[21]SKIRYCZ A,INZ D.More from less:Plant growth under limited water[J].Current Opinion in Biotechnology,2010,21(2):197-203.[22]WAHAB A,ABDI G,SALEEM M H,et al.Plants′ physio-biochemical and Phyto-hormonal responses to alleviate the adverse effects of drought stress:A comprehensive review[J].Plants,2022,11(13):1620.[23]安玉艳,梁宗锁.植物应对干旱胁迫的阶段性策略[J].应用生态学报,2012,23(10):2907-2915.[24]FURLAN A L,BIANUCCI E,GIORDANO W,et al.Proline metabolic dynamics and implications in drought tolerance of peanut plants[J].Plant Physiology and Biochemistry,2020,151:566-578.[25]STEPHENIE S,CHANG Y P,GNANASEKARAN A,et al.An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement[J].Journal of Functional Foods,2020,68:103917.[26]SUN Y,WANG C,CHEN H Y H,et al.Response of plants to water stress:A meta-analysis[J].Frontiers in Plant Science,2020(11):978.[27]WANG Z,YANG Y,YADAV V et al.Drought-induced proline is mainly synthesized in leaves and transported to roots in watermelon under water deficit[J].Horticultural Plant Journal,2022,8(5):615-626.[28]张文丽,张彤,吴冬秀,等.土壤逐渐干旱下玉米幼苗光合速率与蒸腾速率变化的研究[J].中国生态农业学报,2006,14(2):72-75.[29]LEISTER D.Enhancing the light reactions of photosynthesis:Strategies,controversies,and perspectives[J].Molecular Plant,2023,16(1):4-22.[30]初梦圆,于延冲.影响植物叶片衰老因素的研究进展[J].生命科学,2019,31(2):178-184.[31]KOZMINSKA A,AL HASSAN M,WISZNIEWSKA A,et al.Responses of succulents to drought:Comparative analysis of four Sedum (Crassulaceae) species[J].Scientia Horticulturae,2019,243:235-242.[32]李艳,王庆,刘国宇,等.4种地被植物干旱胁迫下的生理响应及抗旱性评价[J].中南林业科技大学学报,2019,39(6):9-15.[33]ZHANG Y,LUAN Q,JIANG J,et al.Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy[J].Frontiers in Plant Science,2021(12):735275.[34]陈根云,陈娟,许大全.关于净光合速率和胞间CO2浓度关系的思考[J].植物生理学通讯,2010,46(1):64-66.[35]CHEN Q,HU T,LI X,et al.Phosphorylation of SWEET sucrose transporters regulates plant root:Shoot ratio under drought[J].Nature Plants,2022,8(1):68-77.[36]GUPTA A,RICO-MEDINA A,CAO-DELGADO A I.The physiology of plant responses to drought[J].Science,2020,368(6488):266-269.[37]李洁.植物干旱胁迫适应机制研究进展[J].广东农业科学,2014,41(19):154-159.[38]GOMES F P,OLIVA M A,MIELKE M S,et al.Osmotic adjustment,proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress[J].Scientia Horticulturae,2010,126(3):379-384.[39]代瑾然,叶辉,陈穗云.非生物及生物胁迫下脱水蛋白的研究进展[J].生物技术通报,2013,29(11):19-25.[40]董斌,洪文泓,黄永芳,等.广西4个油茶品种苗期对干旱胁迫的生理响应[J].中南林业科技大学学报,2018,38(2):1-8.[41]韩磊,孙兆军,展秀丽,等.宁夏河东沙区柠条植株叶片蒸腾对干旱胁迫的响应[J].生态环境学报,2015,24(5):756-761.[42]刘江,朱丽杰,张开,等.不同生育期干旱胁迫/复水对大豆光合特性及产量的影响[J].生态环境学报,2022,31(2):286-296.[43]高丽霞,陈阳春,郑元彦.3种观赏藤本植物耐旱性研究[J].防护林科技,2007(4):45-46,49.[44]OUYANG S N,GESSLER A,SAURER M,et al.Root carbon and nutrient homeostasis determines downy oak sapling survival and recovery from drought[J].Tree Physiology,2021,41(8):1400-1412.

Memo

Memo:
-
Last Update: 2025-03-14