|Table of Contents|

Spatial Differentiation Characteristics of Soil Organic Carbon,Total Nitrogen and Total Phosphorus in Xilingol Steppe

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2023年06
Page:
70-79
Research Field:
Publishing date:

Info

Title:
Spatial Differentiation Characteristics of Soil Organic Carbon,Total Nitrogen and Total Phosphorus in Xilingol Steppe
Author(s):
Wurihan1ZHANG Xinhai2CHANG Shuai1YU Hongbo1LI Xiang1ZHANG Qiaofeng1
(1.College of Geography Science,Inner Mongolia Normal University,Hohhot,Inner Mongolia 010022;2.The First Affiliated Middle School of Inner Mongolia Normal University,Hohhot,Inner Mongolia 010022)
Keywords:
soil carbonnitrogen and phosphorusecological stoichiometryspatial variabilityXilingol grassland
PACS:
-
DOI:
10.11937/bfyy.20222096
Abstract:
The 0-20 cm surface soil nutrients in Xilingol grassland were used as test marerial.The field sampling and laboratory experiments were carried out,the characteristics and spatial variability of the soil nutrients were studied by classical statistics,geostatistics,spatial autocorrelation analysis and GIS technology,in order to provide reference for grassland ecological environment protection and sustainable utilization of soil resources.The results showed that,1) SOC content was deficient,TN content was abundant and TP content was extremely scarce in Xilingol grassland.The variation of soil C,N,P and their stoichiometric ratios were moderate.2) In Xilingol grassland,SOC,TN,TP,C/P and C/N had strong spatial variability,which was mainly caused by structural factors.N/P was a medium spatial variation,which was mainly caused by random factors and structural factors.3) SOC,TN and the global ecostoichiometric Moran′s I were positive in Xilingol grassland,belonging to the cluster distribution type,while TP belonged to the isolated distribution type.4) The horizontal spatial distribution of SOC,TN,C/N,C/P and N/P in the 0-20 cm soil layer of Xilingol grassland showed a zonal distribution,gradually decreasing from east to west,and the spatial distribution of TP was not significantly different.5) Except that soil TP had no significant correlation with C/N and C/P,the other indexes had significant or extremely significant correlation characteristics.

References:

[1]ELSER J J,STERNER R W,GOROKHOVA E,et al.Biological stoichiometry from genes to ecosystems[J].Ecology Letters,2000,3(6):540-550.[2]江叶枫,郭熙,孙凯,等.江西省耕地土壤碳氮比空间变异特征及其影响因素[J].环境科学,2017,38(9):3840-3850.[3]张光德,赵传燕,戎战磊,等.祁连山中部不同植被类型土壤生态化学计量特征研究[J].兰州大学学报(自然科学版),2019,55(4):533-540.[4]XU Z W,YU G R,ZHANG X Y,et al.Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[J].Soil Biology & Biochemistry,2017,104(1):152-163.[5]邬畏,何兴东,周启星.生态系统氮磷比化学计量特征研究进展[J].中国沙漠,2010,30(2):296-302.[6]崔旭辉,郝羽,邱扬.黄土高原大南沟小流域土壤养分空间分异特征[J].北京师范大学学报(自然科学版),2016,52(4):472-478.[7]徐剑波,宋立生,彭磊,等.土壤养分空间估测方法研究综述[J].生态环境学报,2011,20(Z2):1379-1386.[8]吕真真,刘广明,杨劲松,等.环渤海沿海区域土壤养分空间变异及分布格局[J].土壤学报,2014,51(5):944-952.[9]周卓丽,张卓栋,罗建勇,等.河北坝上地区坡面尺度土壤有机碳空间变异[J].水土保持研究,2021,28(1):31-36,43.[10]孙骞,王兵,周怀平,等.黄土丘陵区小流域土壤碳氮磷生态化学计量特征的空间变异性[J].生态学杂志,2020,39(3):766-774.[11]江叶枫,叶英聪,郭熙,等.江西省耕地土壤氮磷生态化学计量空间变异特征及其影响因素[J].土壤学报,2017,54(6):1527-1539.[12]艾尤尔?亥热提,王勇辉,海米提?依米提.艾比湖湿地土壤速效钾空间变异性分析[J].土壤通报,2015,46(2):375-381.[13]张亚茹,欧阳旭,褚国伟,等.鼎湖山季风常绿阔叶林土壤有机碳和全氮的空间分布[J].应用生态学报,2014,25(1):19-23.[14]谢红花,李超,钱晔,等.云南乌蒙山区土壤养分空间变异及海拔梯度分布规律[J].中国农学通报,2019,35(8):52-59.[15]赵如梦,张炳学,王晓霞,等.黄土高原不同种植年限苜蓿草地土壤与植物化学计量特征[J].草业科学,2019,36(5):1189-1199.[16]春风,那仁满都拉,张卫青,等.白音华矿区土壤重金属含量的空间异质性[J].应用生态学报,2021,32(2):601-608.[17]陈海生,王世界,赵玉明.豫中植烟区土壤速效养分的空间变异分析[J].水土保持研究,2014,21(4):78-81.[18]谭海燕,童江云,包涛,等.昆明市滇池片区耕地土壤养分含量空间分布及变化情况分析[J].西南农业学报,2019,32(7):1614-1620.[19]赵宗生,邱坤艳,祝慧娜,等.田块尺度污染农田土壤铅、镉和砷含量的空间变异及其对土地利用的启示[J].土壤通报,2019,50(2):474-481.[20]吴昕.内蒙古锡林郭勒草原沙质荒漠化的沙源及其地质学成因分析[D].武汉:中国地质大学,2018.[21]张巧凤,刘桂香,于红博,等.锡林郭勒草原土壤含水量遥感反演模型及干旱监测[J].草业学报,2017,26(11):1-11.[22]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005.[23]王强,戴九兰,付合才,等.空间分析方法在微生物生态学研究中的应用[J].生态学报,2010,30(2):439-446.[24]范夫静,黄国勤,宋同清,等.西南峡谷型喀斯特坡地土壤微生物量C、N、P空间变异特征[J].生态学报,2014,34(12):3293-3301.[25]周卓丽,张卓栋,罗建勇,等.河北坝上地区坡面尺度土壤有机碳空间变异[J].水土保持研究,2021,28(1):31-36,43.[26]常帅,于红博,曹聪明,等.锡林郭勒草原土壤有机碳分布特征及其影响因素[J].干旱区研究,2021,38(5):1355-1366.[27]丁凡,廉培勇,曾德慧.松嫩平原草甸三种植物叶片N、P化学计量特征及其与土壤N、P浓度的关系[J].生态学杂志,2011,30(1):77-81.[28]安钰,安慧,李生兵.放牧对荒漠草原土壤和优势植物生态化学计量特征的影响[J].草业学报,2018,27(12):94-102.[29]吴雨晴,田赟,周建琴,等.不同放牧制度草地土壤碳氮磷化学计量特征[J].应用与环境生物学报,2019,25(4):801-807.[30]胡小燕,段爱国,张建国,等.广西大青山杉木人工林碳氮磷生态化学计量特征[J].生态学报,2020,40(4):1207-1218.[31]TIAN H Q,CHEN G S,ZHANG C,et al.Pattern and variation of C:N:P ratios in China′s soils:A synthesis of observational data[J].Biogeochmistry,2010,98(3):139-151.[32]赵航,贾彦龙,王秋凤.中国地带性森林和农田生态系统C-N-P化学计量统计特征[J].第四纪研究,2014,34(4):803-814.[33]曹祥会,龙怀玉,周脚根,等.河北省表层土壤有机碳和全氮空间变异特征性及影响因子分析[J].植物营养与肥料学报,2016,22(4):937-948.[34]席小康,朱仲元,郝祥云.锡林河流域土壤有机碳空间变异分析[J].水土保持研究,2017,24(6):97-104.[35]范夫静,宋同清,黄国勤,等.西南峡谷型喀斯特坡地土壤养分的空间变异特征[J].应用生态学报,2014,25(1):92-98.[36]张爱娣,郑仰雄,吴碧珊,等.滨海湿地土壤微生物群落多样性及其影响因素[J].水土保持研究,2020,27(3):8-14,22.[37]李金芬,程积民,刘伟,等.黄土高原云雾山草地土壤有机碳、全氮分布特征[J].草地学报,2010,18(5):661-668.[38]李冬冬,方昭,杜好田,等.黄土高原不同植被带草本植物叶片与土壤碳氮分布特征[J].植物营养与肥料学报,2019,25(5):841-850.[39]郝百惠.内蒙古草原土壤微生物群落的分布格局与驱动因子[D].呼和浩特:内蒙古大学,2018.[40]刘雨晴.内蒙古草原土壤微生物C:N:P化学计量比特征及其驱动因子[D].南京:南京师范大学,2019.[41]李想,于红博,刘月璇,等.锡林郭勒不同草原类型群落生物量及多样性研究[J].草地学报,2022,30(1):196-204.

Memo

Memo:
-
Last Update: 2023-04-18