|Table of Contents|

Effects of Water Depth and Light on Growth Characteristics and Nitrogen Removal Efficiency of Three Submerged Plants

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2022年22
Page:
81-90
Research Field:
Publishing date:

Info

Title:
Effects of Water Depth and Light on Growth Characteristics and Nitrogen Removal Efficiency of Three Submerged Plants
Author(s):
HE Yushi12WANG Xiaoping3HE Tonghui12ZHAO Mingtao12WANG Chaoqun12
(1.College of Ecological Environment,Ningxia University,Yinchuan,Ningxia 750021;2.Laboratory of Oasis Wetland Ecology,Ningxia University,Yinchuan,Ningxia 750021;3.Wetland Protection Center of Yinchuan,Yinchuan,Ningxia 750021)
Keywords:
water depthlightsubmerged plantpurification effect
PACS:
-
DOI:
10.11937/bfyy.20221550
Abstract:
The typical submerged plants of Ningxia,Najas marina L.,Myriophyllum verticillatum L. and Potamogeton pectinatus L. were used as experimental materials.The effects of different water depths (60,40,20 cm) and shading conditions (30%,60%,100%) on the morphological characteristics and nitrogen removal of three submerged plants were studied by controlled laboratory experiments,in order to provide reference for the introduction and purification of submerged plants.The results showed that the abundance and survival rate of Najas marina L.,Myriophyllum verticillatum L. and Potamogeton pectinatus L. decreased with the increase of water depth,and the plant height,plant diameter and water depth were inversely proportional.In the shading treatment,the change trend of abundance,coverage and survival rate of Najas marina L. and Myriophyllum verticillatum L. were equal,which were 30%>100%>60%.In the two experiments,the nitrogen removal rates of Myriophyllum verticillatum L. were the highest,which were 99.50% and 60.67%,respectively,and the maximum purification capacity was 11.43 L,and the equilibrium was the highest,which was more stable than other plants.It is suggested that in the future biological purification project in the northern area,the preferred species for the construction group is Myriophyllum verticillatum L..

References:

[1]MURPHY T P,LAWSO N,KUMAGA I,et al.Review of emerging issues in sediment treatment[J].Aquatic Ecosystem Health,1999,2(4):419-434.[2]刘俊红.三种类型人工湿地对富营养化水体的净化效果比较[J].北方园艺,2018(19):116-124.[3]金庆豪.基于介电泳技术治理水体富营养化的研究[D].北京:中央民族大学,2019.[4]张振雷.锁磷剂与藻类生物膜联用处理喻家湖湖水的实验研究[D].武汉:华中科技大学,2017.[5]白院生,葛海香,韩玉林,等.轮叶狐尾藻对水体重金属铅污染的耐性研究[J].北方园艺,2018(1):104-109.[6]刘旭富,石青.五种水生植物对富营养化水体净化能力的研究[J].北方园艺,2012(22):54-56.[7]LIU Y,YAO T,ZHU L,et al.Bacterial diversity of freshwater alpine lake puma yumco on the Tibetan Plateau[J].Geomicrobiology Journal,2009,26(2):131-145.[8]MICHAEL T S,SHIN H W,HANNA R,et al.A review of epiphyte community development:surface interactions and settlement on seagrass[J].Journal of Environmental Biology,2008,29(4):629-638.[9]马建中,黄和,贾利.水深对立体种植沉水植物污染物去除效果的影响[J].能源环境保护,2021,35(5):37-42.[10]王文林,王国祥,李强.水体浊度对菹草(Potamogeton cripus)幼苗生长发育的影响[J].生态学报,2006,26(11):3586-3593.[11]ZHANG X B,GUO K D,LU C,et al.Effects of origin and water depth on morphology and reproductive modes of the submerged plant Vallisneria natans[J].Global Ecology and Conservation,2020(24):e01330.[12]刘寒.沉水植物适应富营养化湖泊弱光环境的生理生态学机制[D].武汉:中国科学院大学(中国科学院武汉植物园),2021.[13]宋鹏华,曾其伟,商敬哲.植物对水淹胁迫响应的研究进展[J].蚕业科学,2013,39(1):160-165.[14]张素娟.水深/光照对苦草生长的影响研究[D].南昌:江西师范大学,2016.[15]CHEN J F,CAO T,ZHANG X L,et al.Differential photosynthetic and morphological adaptations to low light affect depth distribution of two submersed macrophytes in lakes[J].Scientific Reports,2016,6(1):34028.[16]吴晓东,王国祥,魏宏农.模拟水位上升对黑藻生长的影响[J].湖泊科学,2012,24(3):384-390.[17]JULIAN J P,SEEGERT S Z,POWERS S M,et a.Light as a first-order control on ecosystem structure in a temperate stream[J].Ecohydrology,2010,4(3):422-432.[18]许木启,黄玉.受损水域生态系统恢复与重建研究[J].生态学报,1998,18(5):101-112.[19]苏睿丽,李伟.沉水植物光合作用的特点与研究进展[J].植物学通报,2005(S1):128-138.[20]丁玲.水体透明度模型及其在沉水植物恢复中的应用研究[D].南京:河海大学,2006.[21]王彤.生境异质性对水生植物生态学性状的影响[D].武汉:武汉大学,2016.[22]HAVENS K.Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake[J].Hydrobiologia,2003,493(1/2/3):173-186.[23]刁若贤,徐兆安,吴东.太湖原位围隔中水深对苦草生长的影响[J].水生态学杂志,2017,38(4):43-47.[24]陈小峰,王庆亚,陈开.不同光照条件对菹草外部形态与内部结构的影响[J].武汉植物学研究,2008(2):163-169.[25]卢蓓.湖泊沉水植物适应水体光衰减的初步研究[D].武汉:中国科学院大学(中国科学院武汉植物园),2017.[26]王亚林,高园园,于丹.3种沉水植物对夏季高温强光照环境的生理响应[J].水生态学杂志,2015,36(5):74-80.[27]鄢文皓,王会会,李前正.影响沉水植物恢复的环境阈值研究进展[J].生态科学,2020,39(5):240-247.[28]卢姣姣,张萌,全水清.低氧、高铵和低光对沉水植物苦草(Vallisneria natans)生长与C-N代谢生理指标的影响特征[J].湖泊科学,2018,30(4):1064-1074.[29]朱光敏.水体浊度和低光条件对沉水植物生长的影响[D].南京:南京林业大学,2009.[30]金树权,周金波,包薇红.5种沉水植物的氮、磷吸收和水质净化能力比较[J].环境科学,2018,38(1):156-161.[31]韩苗苗.沉水植物光合作用对河湖水质净化过程的影响研究[D].北京:北京交通大学,2020.[32]唐玥.典型水生植物对水体氮磷的净化功能研究[D].上海:华东师范大学,2020.[33]KEMP W M,BATLESON R,BERGSTROM P,et al.Habitat requirements for submerged aquatic vegetation in Chesapeake Bay:Water quality,light regime,and physical-chemical factors[J].Estuaries,2004,27(3):363-377.[34]吴明丽,李叙.光衰减及其相关环境因子对沉水植物生长影响研究进展[J].生态学报,2012,32(22):7202-7212.

Memo

Memo:
-
Last Update: 2023-01-17