|Table of Contents|

Design and Finite Element Analysis of New Fabricated Skeleton Joints in Solar Greenhouse

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2021年12
Page:
50-56
Research Field:
Publishing date:

Info

Title:
Design and Finite Element Analysis of New Fabricated Skeleton Joints in Solar Greenhouse
Author(s):
ZHOU FengHE Bin
(School of Water Conservancy and Civil Engineering,Northwest A&F University,Yangling,Shaanxi 712100)
Keywords:
solar greenhousefabricated trussassembly nodefinite element
PACS:
-
DOI:
10.11937/bfyy.20204171
Abstract:
In order to realize the assembly of the solar greenhouse frame,control the installation quality,and improve the stress performance of the greenhouse frame,a new type of fabricated frame and fabricated nodes of the solar greenhouse have been designed,in order to provide new research for the fabricated sunlight greenhouse ideas.Using ANSYS Workbench software to assist in modeling and analysis,comparing and selecting two assembly methods of outer casing and inner intubation,the stress,shear and bending moment of the main pipe and casing under the action of uniformly distributed load step by step;using Workbench software to analyzes the axial stress,shear force,bending moment and deformation of the fabricated frame under the most unfavorable load.The results showed that it was concluded that in the assembly mode of the outer casing,the axial stress and bending moment of the main pipe and the casing itself were smaller and the safety was higher.Under the most unfavorable load combination,the three-section truss assembled with outer casing has a maximum axial stress of 17.35 MPa,a maximum deformation of 0.26 mm,a casing maximum axial stress of 5.0 MPa,a maximum shear force of 2 345.3 N,and a maximum bending moment of 41.3 N·m.The new prefabricated framework and prefabricated joints of the solar greenhouse are safe,stable,and small in deformation and can be popularized.

References:

[1]蒲宝山,郑回勇,黄语燕.我国温室农业设施装备技术发展现状及建议[J].江苏农业科学,2019,47(14):13-18.[2]刘志杰,郑文刚,胡清华.中国日光温室结构优化研究现状及发展趋势[J].中国农学通报,2007(2):449-453.[3]刘炳欣.杨凌示范区蔬菜瓜果产业发展问题探析[J].山西农经,2019(21):100-101.[4]唐致宗,张柏,廖永宏.武威市凉州区日光温室产业发展历程及未来发展模式[J].农业科技与信息,2020(1):67-69.[5]白义奎,王鸿,王铁良,等.新型钢骨架结构日光温室设计与测试[J].沈阳农业大学学报,2013,44(5):542-547.[6]魏晓明,周长吉,曹楠.中国日光温室结构及性能的演变[J].江苏农业学报,2012,28(4):855-860.[7]严薇,曹永红,李国荣.装配式结构体系的发展与建筑工业化[J].土木建筑与环境工程,2004,26(5):131-136.[8]白义奎.落地装配式全钢骨架结构日光温室研究与应用[J].沈阳农业大学学报,2015,46(5):525.[9]张义,方慧,周波,等.轻简装配式主动蓄能型日光温室[J].农业工程技术(温室园艺),2015(25):36-38.[10]鲍恩财,申婷婷,张勇,等.装配式主动蓄热墙体日光温室热性能分析[J].农业工程学报,2018,34(10):178-186.[11]朱雄伟,何斌,张勇.全季光照下日光温室后屋面水平投影宽度优化[J].北方园艺,2020(1):56-61.[12]李天来,邹志荣,马承.节能日光温室设计建造规程[M].北京:中国农业出版社,2017.[12]刘丽霞,雷法究.两种典型日光温室结构安全性能分析[J].林业机械与木工设备,2016,44(11):18-23.[13]翟莲,刘东辉,宋述尧,等.吉林省日光温室钢骨架的受力性能研究[J].农机化研究,2011,33(8):31-34.[14]王斌,金宝宏,宋建夏.不同曲率下日光温室钢骨架变形特性分析[J].宁夏工程技术,2009(4):70-72.[15]郎晋鹏.日光温室H型钢骨架设计及ANSYS分析[D].大同:山西农业大学,2016.[16]周炬,苏金英.ANSYS Workbench有限元分析实例详解(静力学)[M].北京:人民邮电出版社,2020.[17]史天翔,辜嘉诚,史江.基于ANSYS Workbench螺栓法兰连接结构有限元分析[J].科技创新与应用,2020(19):111-112.[18]张召颖,张帆,邹洵.基于ANSYS Workbench的T形结构优化设计[J].计算机辅助工程,2019,28(3):35-38.

Memo

Memo:
-
Last Update: 2021-09-27