[1]ESFAHANIAN E,NEJADHASHEMI A P,ABOUALI M,et al.Development and evaluation of a comprehensive drought index[J].Journal of Environmental Management,2017,185:31-34.[2]LOBELL D B,ROBERTS M J,SCHLENKER W.Greater sensitivity to drought accompanies maize yield increase in the U.S.Midwest[J].Science,2014,344:516-519.[3]LI M X,MA Z G.Soil moisture drought detection and multi-temporal variability across China[J].Science China Earth Sciences,2015,58(10):1798-1813.[4]杨阳,申双和,马绎皓,等.干旱对作物生长的影响机制及抗旱技术的研究进展[J].科技通报,2020,36(1):8-15.[5]王琳.外源腐胺提高散叶生菜耐旱性的生理机制及细胞超微结构研究[D].北京:北京农学院,2017.[6]李琬婷,宁朋,王菲,等.外源脱落酸对干旱胁迫下滇润楠幼苗生长及生理特性的影响[J].应用生态学报,2020,31(5):1543-1550.[7]王丽君,李冬,申洪涛,等.油菜素内酯对干旱胁迫下烤烟幼苗生长生理及光合特性的影响[J].西北农林科技大学学报(自然科学版),2020(11):1-9.[8]邹芳,杨秀柳,黄思麒,等.外源亚精胺对干旱胁迫下甜高粱幼苗生长及生理生化指标的影响[J].中国农业科技导报,2020,22(4):44-52.[9]宋佳琦,王玉祥,张博.外源6-BA对紫花苜蓿盛花期叶片光合、生理特性及结荚率的影响[J].草业科学,2019,36(3):720-728.[10]李爽.外源硅对干旱胁迫下大叶女贞光合作用及叶绿素荧光特性的影响[J].江苏农业科学,2019,47(22):174-178.[11]贾国涛,顾会战,许自成,等.作物硅素营养研究进展[J].山东农业科学,2016,48(5):153-158.[12]NISHIMURA K,MIYAKE Y,TAKAHASHI E.On silicon,aluminium,and zinc accumulators discriminated from 147 species of Angiospermae[J].Memoirs of the College of Agriculture Kyoto University,1989,133:23-43.[13]LIANG Y,ZHU J,LI Z,et al.Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars[J].Environmental and Experimental Botany,2008,64(3):286-294.[14]HATTORI T,INANAGA S,ARAKI H,et al.Application of silicon enhanced drought tolerance in Sorghum bicolor[J].Physiologia Plantarum,2005,123(4):459-466.[15]NAKATA Y,UENO M,KIHARA J,et al.Rice blast disease and susceptibility to pests in a silicon uptake-deficient mutant lsi1 of rice[J].Crop Protection,2008,27(3-5):865-868.[16]FAROOQ M A,ALI S,HAMEED A,et al.Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis,antioxidant enzymes;suppressed cadmium uptake and oxidative stress in cotton[J].Ecotoxicology & Environmental Safety,2013,96(4):242-249. [17]〖JP2〗ARNON D I.Copper enzyme in isolated chloroplasts poly-phenoloxidase in Beta vulgaris[J].Plant Physiol,1949,24(1):1-15.〖JP〗[18]ZHANG Y,SHI Y.Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress[J].Journal of Integrative Agriculture,2018,17(10):2151-2159.[19]孙萌,尚忠海,沈植国,等.植物对干旱胁迫响应的研究进展[J].河南林业科技,2019,39(4):1-3,44.[20]LI H L,ZHU Y X,HU Y H,et al.Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture[J].Acta Physiologiae Plantarum,2015,37(4):71.[21]AGARIE S,HANAOKA N,UENO O,et al.Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.),monitored by electrolyte leakage[J].Plant Production Science,1998,1(2):96-103.[22]曹逼力,李炜蔷,徐坤.干旱胁迫下硅对番茄叶片光合荧光特性的影响[J].植物营养与肥料学报,2016,22(2):495-501.[23]余利平,张春雷,马霓,等.甘蓝型油菜对干旱和低磷双重胁迫的生理反应Ⅱ:叶片叶绿素含量及叶绿素荧光参数[J].干旱地区农业研究,2013,31(2):169-175.[24]MISHRA S,AGRAWAL S B.Interactive effects between supplemental ultraviolet-B radiation and heavy metals on the growth and biochemical characteristics of Spinacia oleracea L.[J].Plant Physiol,2006,18(2):307-314.[25]李思,张莉,姚雅琴.干旱对冬小麦叶片气孔、活性氧和光合作用的影响[J].河北大学学报(自然科学版),2015,35(5):487-493.[26]孙山,徐秀玉,程来亮,等.干旱胁迫下硅对平邑甜茶光合功能的影响[J].植物生理学报,2015,51(12):2231-2238.[27]王立涵,王翔,李世斌,等.高温胁迫下外源物质对黄瓜幼苗叶绿素荧光和抗氧化酶活性的影响[J].安徽农学通报,2019,25(10):20-22,95.[28]徐晨,刘晓龙,李前,等.供氮水平对盐胁迫下水稻叶片光合及叶绿素荧光特性的影响[J].植物学报,2018,53(2):185-195.[29]刘铎,李平,杨庆山,等.硅提高植物耐旱性研究进展[J].广东农业科学,2019,46(2):88-93.