|Table of Contents|

Effects of Nutrient Solution Concentration and Ratio of NO-3-N to NH+4-N on Tomato Growth in Soilless Culture

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年24
Page:
39-45
Research Field:
Publishing date:

Info

Title:
Effects of Nutrient Solution Concentration and Ratio of NO-3-N to NH+4-N on Tomato Growth in Soilless Culture
Author(s):
LI Fei12DONG Jing3ZHAO Zhiwei3CHEN Shihao1LIANG Bin1LI Junliang1
(1.College of Resources and Environment,Qingdao Agricultural University/Shandong Water Fertilizer Integrated Engineering Technology Research Center,Qingdao,Shandong 266109;2.Weifang Vocational College,Weifang,Shandong 262700;3.Agricultural Bureau of Shouguang,National Shouguang Comprehensive Test Station for Bulk Vegetable System,Weifang,Shandong 262700)
Keywords:
soilless culturenitrogen formrootgreenhouse vegetable
PACS:
-
DOI:
10.11937/bfyy.20200914
Abstract:
Tomato was used as test material,a pot experiment was conducted to evaluate the effects of nutrient solution concentrations (the N content was 3.2 mmol?L-1 (T0.4),5.6 mmol?L-1 (T0.7),8.0 mmol?L-1 (T1),16.0 mmol?L-1 (T2),24.0 mmol?L-1 (T3)) and nitrate-ammonium ratio(NO-3-N/NH+4-N=100/0(R100),75/25(R75),50/50(R50),25/75(R25),0/100(R0)) on tomato seedling growth in soilless culture.The results showed that there was a significant interaction between concentration and ratios of NO-3-N to NH+4-N on plant height and biomass of tomato.Aboveground biomass of tomato in T2 treatment was the largest,which was significantly increased by 7.8%-62.2% compared with other concentration treatments under the treatments of R100 and R75.In the concentrations treatments of T0.7 and T1,the aboveground biomass of R75 treatment significantly increased by 7.6% and 13.6% than R100 treatment.In the treatments of R25 and R0,which the NH+4-N content was higher than NO-3-N,tomato plant height significantly reduced by 19.6% to 26.9%,and aboveground biomass reduced by 17.8% to 48.6% than the treatment of R100.Total root length,root surface area and root biomass decreased with the increase of nutrient solution concentration.Under the lower concentration (T0.4) of nutrient solution,nitrate nitrogen was more beneficial to the growth of tomato roots,and root surface area,total root length and root biomass of R100 treatment were significantly increased by 23.7%-88.7%,22.2%-112.7% and 5.0%-180.0% compared with other ratio of nitrate to ammonium treatments.Root-shoot ratio of T0.4 treatment was significantly higher by 1.3-1.7 times than T1 treatment.The SPAD value in the treatment of combined addition of NO-3-N and NH+4-N increased by 9.9% to 13.2% than the alone addition of NO-3-N or NH+4-N.In general,in the stage of tomato seedling,the recommended nutrient solution concentration EC value was 0.6-1.4 mS?cm-1 and the salt content was 0.15‰ and 1.01‰,in which the N concentration was 3.2-5.6 mmol?L-1,and the suitable the ratio of nitrate to ammonium was 75/25,the recommended concentration and NO-3-N/NH+4-N ratio could enhance the growth of tomato roots.

References:

[1]李天来,许勇,张金霞.我国设施蔬菜、西甜瓜和食用菌产业发展的现状及趋势[J].中国蔬菜,2019(11):6-9.[2]张真和,马兆红.我国设施蔬菜产业概况与“十三五”发展重点:中国蔬菜协会副会长张真和访谈录[J].中国蔬菜,2017(5):1-5.[3]张北赢,陈天林,王兵.长期施用化肥对土壤质量的影响[J].中国农学通报,2010,26(11):182-187.[4]巨晓棠,谷保静.我国农田氮肥施用现状、问题及趋势[J].植物营养与肥料学报,2014,20(4):783-795.[5]黄绍文,唐继伟,李春花,等.我国蔬菜化肥减施潜力与科学施用对策[J].植物营养与肥料学报,2017,23(6):1480-1493.[6]刘霓红,蒋先平,程俊峰,等.国外有机设施园艺现状及对中国设施农业可持续发展的启示[J].农业工程学报,2018,34(15):1-9.[7]费颖恒,黄艺,严昌荣,等.大棚种植对农业土壤环境的胁迫[J].农业环境科学学报,2008,27(1):243-247.[8]赵翠英,过亚东.设施农业土壤质量问题的研究[J].农业科技通讯,2015(2):124-127.[9]史静,张乃明,包立.我国设施农业土壤质量退化特征与调控研究进展[J].中国生态农业学报,2013,21(7):787-794.[10]姜勇,张玉革,梁文举.温室蔬菜栽培对土壤交换性盐基离子组成的影响[J].水土保持学报,2005(6):80-83.[11]李婷婷,马蓉丽,成妍,等.中国蔬菜基质栽培研究新进展[J].农学学报,2013,3(4):30-34.[12]杜娅丹.无土栽培番茄对不同氮肥形态和浓度的响应[D].杨凌:西北农林科技大学,2016.[13]MAGALHAES J R,HUBER D M .Response of ammonium assimilation enzymes to nitrogen form treatments in different plant species[J].Journal of Plant Nutrition,1991,14(2):175-185.[14]林碧英,张瑜,陈青青,等.不同施肥水平对温室樱桃番茄生长和产量的影响[J].西北农业学报,2010,19(5):122-126.[15]袁野,吴凤芝,周新刚,等.光氮互作对番茄生长发育的影响[J].中国蔬菜,2009,1(22):28-32.[16]李海平,郭荣,李灵芝,等.氮素对温室番茄果实发育及其氮吸收量的影响[J].核农学报,2010,24(2):365-369.[17]卢颖林,李庆余,徐新娟,等.不同形态氮素对番茄幼苗体内营养元素含量的影响[J].中国农学通报,2010,26(21):122-130.[18]汪建飞,董彩霞,沈其荣,等.不同铵硝比对菠菜生长、安全和营养品质的影响[J].土壤学报,2007,44(4):683-688.[19]张富仓,康绍忠,李志军.氮素形态对白菜硝酸盐累积和养分吸收的影响[J].园艺学报,2003,30(1):93-94.[20]周箬涵,郁继华,杨兵丽,等.不同氮素形态及配比对娃娃菜产量、品质及其养分吸收的影响[J].华北农学报,2015,30(3):216-222.[21]刘瑞平,冯静,骆洪义.营养液中不同氮素水平对基质栽培番茄产量和品质的影响[J].北方园艺,2015(20):23-26.[22]谢小玉,邹志荣,江雪飞,等.中国蔬菜无土栽培基质研究进展[J].中国农学通报,2005(6):280-283.[23]柳美玉,曹红霞,杜贞其,等.营养液浓度对番茄营养生长期干物质累积及养分吸收的影响[J].西北农林科技大学学报(自然科学版),2017(4):119-126.[24]肖云华,吕婷婷,唐晓清,等.追施氮肥量对菘蓝根的外形品质、干物质积累及活性成分含量的影响[J].植物营养与肥料学报,2014(2):437-444.[25]LAW C N,SNAPE J W,WORLAND A J .The genetical relationship between height and yield in wheat[J].Heredity,1978,40(1):133-151.[26]王启现,王璞,杨相勇,等.不同施氮时期对玉米根系分布及其活性的影响[J].中国农业科学,2003(12):1469-1475.[27]李翠兰,李志洪,张晋京,等.不同肥料处理对玉米苗期根系生长的影响[J].吉林农业大学学报,2001,23(3):87-89.[28]曹翠玲,李生秀.氮素形态对作物生理特性及生长的影响[J].华中农业大学学报,2004,23(5):581-586.[29]BHAT K K S .Nutrient inflows into apple roots[J].Plant and Soil,1983,71(1-3):371-380.[30]SCHUBERT S,SCHUBERT E,MENGEL K.Effect of low pH of the root medium on proton release,growth,and nutrient uptake of field beans (Vicia faba)[J].Plant & Soil,1990,124(2):239-244.[31]朱毅勇,曾后清,狄廷均,等.细胞膜质子泵在水稻耐铵机制中的作用机理探讨[J].中国水稻科学,2011,25(1):112-118.

Memo

Memo:
-
Last Update: 2021-03-26