[1]TANG J L,WANG D,ZHANG Z G,et al.Weed identification based on K-means feature learning combined with convolutional neural network[J].Computers and Electronics in Agriculture,2017,135:63-70.[2]王林,张鹤鹤.Faster R-CNN 模型在车辆检测中的应用[J].计算机应用,2018,38(3):666-670.[3]张乐,金秀,傅雷扬,等.基于Faster R-CNN深度网络的油菜田间杂草识别方法[J].激光与光电子学进展,2019,12(8):1-16.[4]申仲峰.基于PyTorch框架下北方田地常见杂草的识别[D].太谷:山西农业大学,2019.[5]POTENA C,NARDI D,PRETTO A.Fast and accurate crop and weed identification with summarized train sets for precision agriculture[J].2016,12(22):76-84.[6]MIAO F,ZHENG S,TAO B.Crop weed identification system based on convolutional neural network[J].IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT),2019,16(206):595-598.[7]SABZI S,ABBASPOUR-GILANDEH Y,GARCA-MATEOS G.A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms[J],Computers in Industry,2018,98(1):68-79.[8]TANG J L,CHEN X Q,MIAO R H,et al.Weed detection using image processing under different illumination for site-specific areas spraying[J].Computers and Electronics in Agriculture,2016,33(122):103-111.[9]GOTHAI E,NATESAN P,AISHWARIYA S,et al.Weed identification using convolutional neural network and convolutional neural network architectures[C].India:2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC),2020.[10]YANO I H,ALVES J R,SANTIAGO W E,et al.Identification of weeds in sugarcane fields through images taken by UAV and Random Forest classifier[J].IFAC-PapersOnLine,2016,49(16):415-420.[11]AND〖KG-*3〗U〖DD(-*2/3〗′〖DD)〗JAR D,DORADO J,FERNNDEZ-QUINTANILLA C,et al.An approach to the use of depth cameras for weed volume estimation[J].Sensors,2016,16(7):972-983.[12]BARRERO O,ROJAS D,GONZALEZ C,et al.Weed detection in rice fields using aerial images and neural networks[C].Bucaramanga:2016 XXI Symposium on Signal Processing,Images and Artificial Vision (STSIVA).IEEE,2016.[13]BAKHSHIPOUR A,JAFARI A,NASSIRI S M,et al.Weed segmentation using texture features extracted from wavelet sub-images[J].Biosystems Engineering,2017,157(33):1-12.[14]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].Computer Science,2014,32(6):2333-2353.[15]SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,inception-ResNet and the impact of residual connections on learning[J].E-prints,2016,2(1):1602-1621.[16]XIE S,GIRSHICK R,DOLLR P,et al.Aggregated residual transformations for deep neural networks[J].CVPR,2017,10(1):5987-5995.[17]BARRET Z,VIJAY V,JONATHON S,et al.Learning transferable architectures for scalable image recognition[J].CVPR,2018,42(33):8697-8710.