|Table of Contents|

Analysis of Soil Organic Carbon Driving in the Eastern Foot of Helan Mountain Based on Geographic Detector

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年17
Page:
87-93
Research Field:
Publishing date:

Info

Title:
Analysis of Soil Organic Carbon Driving in the Eastern Foot of Helan Mountain Based on Geographic Detector
Author(s):
CHEN FengHE JingCUI Wenbin
(College of Resources and Environment,Ningxia University/Ningxia (China-Arab) Key Laboratory of Environmental Assessment and Resource Regulation in Arid Region,Yinchuan,Ningxia 750021)
Keywords:
soil organic carbongeo-detectordriving forceeastern foot of Helan Mountain
PACS:
-
DOI:
10.11937/bfyy.20194661
Abstract:
Seven-year-old grapes at the eastern foot of Helan Mountain in Ningxia were used as the research object,and the relationship between total organic carbon,light organic carbon,recombinant organic carbon,high activity,middle activity and low activity organic carbon in soil and some physical and chemical properties of soil were analyzed in soil based on geo-detector,in order to study the relationship between soil organic carbon and its components and soil nutrients in arid and semi-arid areas.The results showed that the content of soil total organic carbon in the eastern foot of Helan Mountain was lower than the average level of China,the average value was (3.93±2.49)g?kg-1,the variation intensity was weak and moderate,and decreased vertically(downward-slightly upward-downward).Interactive detector showed that total potassium and available potassium are the most powerful interaction factors between light group and active organic carbon.Factor detector and Ecological risk detector shows that total nitrogen had a significant effect on the spatial distribution of soil total organic carbon and had the greatest contribution to the spatial distribution of soil total organic carbon,in order to provide a basis for comprehensive understanding of the contribution of soil organic carbon driving factors.

References:

[1]陈心桐,徐天乐,李雪静,等.中国北方自然生态系统土壤有机碳含量及其影响因素[J].生态学杂志,2019,38(4):1133-1140.[2]赵永存,徐胜祥,王美艳,等.中国农田土壤固碳潜力与速率:认识、挑战与研究建议[J].中国科学院院刊,2018,33(2):191-197.[3]潘竟虎,文岩.中国西北干旱区植被碳汇估算及其时空格局[J].生态学报,2015,35(23):7718-7728.[4]白雪爽,胡亚林,曾德慧,等.半干旱沙区退耕还林对碳储量和分配格局的影响[J].生态学杂志,2008(10):1647-1652.[5]师晨迪,许明祥,邱宇洁,等.黄土丘陵区县域农田土壤近30年有机碳变化及影响因素研究:以甘肃庄浪县为例[J].环境科学,2014,35(3):1098-1104.[6]颜安.新疆土壤有机碳/无机碳空间分布特征及储量估算[D].北京:中国农业大学,2015.[7]江叶枫,饶磊,郭熙,等.江西省耕地土壤有机碳空间变异的主控因素研究[J].土壤,2018,50(4):778-786.[8]何铁光,俞月凤,蒙炎成,等.桂西北喀斯特区不同退化程度石灰土有机碳与养分剖面分布特征[J].水土保持研究,2019,26(4):13-18.[9]李忠芳,唐政,娄翼来,等.我国南方桂东地区农田土壤养分特征及对有机碳驱动分析[J].中国土壤与肥料,2015(3):6-11.[10]朱鹤,刘家明,陶慧,等.北京城市休闲商务区的时空分布特征与成因[J].地理学报,2015,70(8):1215-1228.[11]王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.[12]宋振威,孙美莹,杨荣金,等.宁夏贺兰山东麓葡萄产业生态系统服务功能价值评估[J].应用生态学报,2019,30(3):979-985.[13]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.[14]金奇,吴琴,钟欣孜,等.鄱阳湖湿地水位梯度下不同植物群落类型土壤有机碳组分特征[J].生态学杂志,2017,36(5):1180-1187.[15]GREGORICH E G,ELLERT B H.Light fraction and macro organic matter in mineral soils[C].Canada:Soil Sampling and Methods of Analysis,1993.[16]魏孝荣,邵明安,高建伦.黄土高原沟壑区小流域土壤有机碳与环境因素的关系[J].环境科学,2008(10):2879-2884.[17]罗由林,李启权,王昌全,等.川中丘陵县域土壤碳氮比空间变异特征及其影响因素[J].应用生态学报,2015,26(1):177-185.[18]徐薇薇,乔木.干旱区土壤有机碳含量与土壤理化性质相关分析[J].中国沙漠,2014,34(6):1558-156.[19]庞圣江,杨保国,刘士玲,等.桂西北喀斯特山区4种森林表土土壤有机碳含量及其养分分布特征[J].中南林业科技大学学报,2018,38(4):60-64,71.

Memo

Memo:
-
Last Update: 2020-12-01