|Table of Contents|

Physiological and Biochemical Responses of Kummerowia striata Seedlings in Heavy Metal Contaminated and Non-contaminated Areas to Mn Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年14
Page:
118-128
Research Field:
Publishing date:

Info

Title:
Physiological and Biochemical Responses of Kummerowia striata Seedlings in Heavy Metal Contaminated and Non-contaminated Areas to Mn Stress
Author(s):
LI XinhangXIAO ZehuaLIU Wensheng
(College of Life Science and Technology,Central South University of Forestry & Technology,Changsha,Hunan 410004)
Keywords:
manganese stressheavy metal contaminated areanon-contaminated areaKummerowia striataseed germinationphysiological and biochemical
PACS:
-
DOI:
10.11937/bfyy.20193503
Abstract:
In order to find out the physical and chemical mechanism of adaptation of Kummerowia striata to manganese stress,the seeds of the scutellariae in the heavy metal contaminated area (Hunan Xiangtan Manganese Mine) and the non-contaminated area (Central South University of Forestry & Technology) were used as the research object.The effects of different concentrations of manganese stress on seed germination,seedling growth and physiological and biochemical characteristics of seedlings were studied.The results showed that,1)with the increase of manganese concentration,the germination rate and germination potential of the two populations of Chrysanthemum morifolium showed a decreasing trend,and the seedling growth showed a phenomenon of ‘low promotion and high inhibition’.The growth was inhibited by manganese stress higher than that of the contaminated area;2)with the increase of manganese concentration,the content of soluble sugar,soluble protein and proline in the two populations increased first and then decreased;the activity of SOD was basically unchanged,the activity POD increased first and then decreased,and the content of MDA gradually increased;3)according to the comparison of the values of the anti-manganese subordinate functions,the corn grass has strong tolerance to manganese stress,and the polluted area population has stronger manganese tolerance than the non-contaminated area.

References:

[1]余轲,刘杰,尚伟伟,等.青葙对土壤锰的耐性和富集特征[J].生态学报,2015,35(16):5430-5436.[2]张瑞清,杨剑超,张占田,等.生物炭对酸化土壤锰毒害的缓解效应研究[J].中国农学通报,2018,34(36):110-116.[3]许丹丹,李金城,阙光龙,等.酸性土壤锰毒及其防治方法[J].环境科学与技术,2010,33(S2):472-475.[4]杨贤均,刘可慧,李艺,等.锰污染土壤对酸模叶蓼氮素代谢的影响[J].生态环境学报,2017,26(10):1776-1781.[5]杨肖娥,龙新宪,倪吾钟,等.古老铅锌矿山生态型东南景天对锌耐性及超积累特性的研究[J].植物生态学报,2001(6):665-672.[6]张郑伟,路运才.锰素对水稻幼苗生长及生理效应的影响[J].中国农学通报,2015,31(18):30-33.[7]王丹媚,杨姣,黄华锋,等.锰胁迫对虎舌红生理生化的影响[J].贵州农业科学,2018,46(4):34-38.[8]潘高,张合平,刘鹏,等.锰胁迫对苍耳种子萌发及幼苗生理生化特性的影响[J].草业学报,2017,26(11):157-166.[9]尚伟伟,刘杰,张学洪,等.锰胁迫对青葙生长及叶绿素荧光特性的影响[J].生态环境学报,2013,22(8):1353-1357.[10]杨兵,廖斌,邓冬梅,等.Cu2+对两种生态型鸭跖草Cu积累和抗氧化酶的影响[J].中国环境科学,2004,24(1):9-13.[11]吴亚荣.鸡眼草的药用价值的研究进展[J].农家顾问,2014,12(15):66-67.[12]吴哲,吴铁明.鸡眼草种子形态特征观测及生活力的测定[J].中国园艺文摘,2013,29(11):9-12.[13]王云,向群,彭友林.常德市鸡眼草生物学特征及危害特性的研究[J].草业学报,2011,20(5):231-236.[14]崔广玲,谢瑞美,岳建建,等.西北部分地区鸡眼草根瘤菌的多样性及系统发育分析[J].农业生物技术学报,2010,18(5):867-875.[15]甘金华,李进平,熊治廷,等.铜胁迫对两种不同来源长萼鸡眼草生长及氮代谢的影响[J].农业环境科学学报,2008,27(3):1057-1065.[16]耿彬,徐礼根,唐建军,等.两种土壤基质条件下鸡眼草对水分胁迫和丛枝菌根真菌的响应[J].科技通报,2008,24(3):315-319,378.[17]张虎,寇江涛,师尚礼.紫花苜蓿种子萌发对钴胁迫的生理生化响应[J].草业学报,2015,24(9):146-153.[18]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.[19]李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社,2000.[20]刘炳响,王志刚,梁海永,等.盐胁迫对不同生境白榆生理特性与耐盐性的影响[J].应用生态学报,2012,23(6):1481-1489.[21]王凯红,凌家慧,张乐华,等.两种常绿杜鹃亚属幼苗耐热性的主成分及隶属函数分析[J].热带亚热带植物学报,2011,19(5):412-418.[22]RAJJOU L,DUVAL M,GALLARDO K,et al.Seed germination and vigor[J].Annual Review Plant Biology,2012,63(3):507-533.[23]王佳,罗学刚,石岩,等.锰胁迫对美洲商陆种子发芽及幼苗生长的影响[J].环境科学与技术,2014,37(11):47-52.[24]ZIMMER D,KRUSE J,BAUM C,et al.Spatial distribution of arsenic and heavy metals in willow roots from a contaminated flood plain soil measured by X-ray fluorescence spectroscopy[J].Science of the Total Environment,2011,409(19):4094-4100.[25]马生军,王文全,杜润清,等.锰胁迫对甘草生理和生长特性的影响[J].西北药学杂志,2015,30(1):4-8.[26]武玉珍,闫芳.Cu2+胁迫对生菜种子萌发和幼苗生理特性的影响[J].山西农业科学,2018,46(12):2005-2009.[27]牟祚民,姜贝贝,潘远智,等.重金属胁迫对天竺葵生长及生理特性的影响[J].草业科学,2019,36(2):434-441.[28]SHEOKAND S,KUMARI A,SAWHNEY V.Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants[J].Physiological and Molecular Plant Pathology,2008,14(4):355-362.[29]辛建攀,李文明,祁茜,等.镉对梭鱼草叶片保护酶活性、光合及荧光特性的影响[J].草业学报,2018,27(10):23-34.[30]WANG X,PENG Y H,SINGER J W,et al.Seasonal changes in photosynthesis,antioxidant systems and ELIP expression in a thermonastic and non-thermonastic rhododendron species:A comparison of photoprotective strategies in overwintering plants[J].Plant Science,2009,177(6):607-617.[31]姜瑛,周萌,吴越,等.不同燕麦品种耐盐性差异及其生理机制[J].草业科学,2018,35(12):2903-2914.[32]王一峰,岳永成.重金属污染区与非污染区乌苏里风毛菊对铅胁迫的生理抗性[J].生态学杂志,2014,33(9):2388-2394.

Memo

Memo:
-
Last Update: 2020-09-15