|Table of Contents|

Response on Growth and Physiological Characteristics of Melon Seedlings Under Alkali Stress

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2020年07
Page:
51-59
Research Field:
Publishing date:

Info

Title:
Response on Growth and Physiological Characteristics of Melon Seedlings Under Alkali Stress
Author(s):
SUN Xiaohua1DONG Xiaojing2LI Xiaojing1CHEN Li3LIU Jiecai1
(1.College of Horticulture and Plant Conservation,Inner Mongolia Agricultural University/Inner Mongolia Engineering Research Center of Facility Horticulture,Hohhot,Inner Mongolia 010019;2.College of Horticultural Science and Engineering,Shandong Agricultural University,Tai′an,Shandong 271018;3.Ulanqab Center for Quality and Safety Supervision and Management,Ulanqab,Inner Mongolia 012000)
Keywords:
‘Horn crisp’ muskmelonalkali stressgrowth potentialphotosynthetic characteristicsoxidation resistance
PACS:
-
DOI:
10.11937/bfyy.20193457
Abstract:
The growth potential,photosynthetic indexes,chlorophyll contents,chlorophyll fluorescence parameters and antioxidant enzyme activities of ‘Horn crisp’ muskmelon (Cucumis melo L.) annual seedlings was measured under treatments with different Na2CO3 concentrations (0 as the control,12.5,25.0,37.5,50.0,62.5,75.0 mmol·L-1),in order to provide theoretical basis for the research on the adaptive mechanism of muskmelon seedlings under alkali stress.The results showed that seedling height,stem diameter and leaf area significantly decreased under 75.0 mmol·L-1 Na2CO3 treatment,compared with the control.With the gradual increase of Na2CO3 concentration in treatments,the net photosynthetic rate (Pn) of the seedlings decreased,whereas the intercellular CO2 concentration (Ci) increased;the chlorophyll (Chl) content showed a decreasing trend,the malondialdehyde (MDA) content,however,was elevating,whereas the free proline (Pro) content increased sharply under high concentration of Na2CO3.The enzyme activity of superoxide dismutase (SOD) and peroxidase (POD) under treatment were significantly higher than the control.The decrease of Pn of seedlings may be a result of non-stomatal restriction.Under high concentration (75.0 mmol·L-1) alkali stress,the growth potential of melon seedlings was impaired,whereas the significantly increased MDA content and accumulation of Pro might have enhanced the resistance of melon seedlingsto alkalinity in later stage.

References:

[1]王英,张国民,李景鹏,等.寒地粳稻耐碱研究进展及开发前景[J].作物杂志,2016(6):1-8.[2]JIN H,PLAHA P,PARK J Y,et al.Comparative EST profiles of leaf and root of Leymus chinensis,a xerophilous grass adapted to high pH sodic soil[J].Plant Science,2006,170(6):1081-1086.[3]LI J,XU H,LIU W,et al.Ethylene inhibits root elongationduring alkaline stress through AUXIN1 and associated changes in auxin accumulation[J].Plant Physiology,2015,168(4):1777-1791.[4]KAWANAB S,ZHU T.Degeneration and conservational trial of Aneurole pidium chinense grassland in Northern China[J].Journal of the Japanese Society for Grassland Science,1991,37:91-99.[5]WANG X,GENG S,MA Y,et al.Growth,photosynthesis,solute accumulation,and ion balance of tomato plant under sodium-or potassium-salt stress and alkali stress[J].Agronomy Journal,2015,107(2):651-661.[6]ZHU J.Regulation of ion homeostasis under salt stress[J].Current Opinion in Plant Biology,2003(6):441-445.[7]MUNNS R,TESTER M.Mechanisms of salinity tolerance[J].Annual Review of Plant Biology,2008,59(1):651-681.[8]VALDEZ-AGUILAR L A,REED D W.Growth and nutrition of young bean plants under high alkalinity as affected by mixtures of ammonium,potassium and sodium[J].Journal of Plant Nutrition,2010,33:1472-1488.[9]VALDEZ-AGUILAR L A,REED D W.Influence of potassium substitution by rubidium andsodium on growth,ion accumulation,and ion partitioning in bean (Phaseolus vulgaris L.) underhigh alkalinity[J].Journal of Plant Nutrition,2008,31(5):867-883.[10]ROOSTA H R.Interaction between water alkalinity and nutrient solution pH on the vegetative growth,chlorophyll fluorescence and leaf Mg,Fe,Mn and Zn concentrations in lettuce[J].Journal of Plant Nutrition,2011,34(5):717-731.[11]LV D,GE Y,JIA B,et al.miR167c is induced by high alkaline stress and inhibits two auxin response factors in Glycine soja[J].Journal of Plant Biology,2012,55(5):373-380.[12]DACOSTA M.Research advances in mechanisms of Turfgrass tolerance to abiotic stresses:From physiologyto molecular biology[J].Critical Reviews in Plant Sciences,2014,33(2-3):141-189.[13]STAVRIDOU E,HASTINGS A,WEBSTER R J,et al.The impact of soil salinity on the yield,composition and physiology of the bioenergy grass Miscanthus×giganteus[J].Global Change Biology Bioenergy,2017,9(1):92-104.[14]ACOSTA-MOTOS J R,LVAREZ S,HERNNDEZJ A,et al.Irrigation of Myrtus communis L.plants with reclaimed water:Morphological and physiological responses to different levels of salinity[J].The Journal of Horticultural Science & Biotechnology,2014,89(5):487-494.[15]del AMOR F M,RUIZ-SANCHEZ M C,MARTINEZ V,et al.Gas exchange,water relations,and ion concentrations of salt-stressed tomato and melon plants[J].Journal of Plant Nutrition,2000,23(9):1315-1325.[16]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.[17]STEWARTR R C,BEWLEY J D.Lipid peroxidation associated with accelerate daging of soybean axes[J].Plant Physiology,1980,65(2):245-248.[18]CAKMAK I,MARSCHNER H.Magnesium deficiency and high light intensityenhance activities of superoxide dismutase,ascorbate peroxidase,and glutathione reductase in bean leaves[J].Plant Physiology,1992,98(4):1222-1227.[19]赵昕,杨小菊,石勇,等.盐胁迫下荒漠共生植物红砂与珍珠的根茎叶中离子吸收与分配特征[J].生态学报,2014,34(4):963-972.[20]WANG H,LIN X,CAO S,et al.Alkali tolerance in rice (Oryza sativa L.):Growth,photosynthesis,nitrogen metabolism,and ion homeostasis[J].Photosynthetica,2015,53(1):55-65.[21]麻云霞,李钢铁,张宏武,等.酸枣的生长及生理特性对盐胁迫的响应[J].水土保持通报,2018,38(3):45-52.[22]LI C,FANG B,YANG C,et al.Effects of various salt-alkaline mixedstresses on the state of mineral elements in nutrient solutions and the growth of alkali resistanthalophyte Chloris virgate [J].Journal of Plant Nutrition,2009,32(7):1137-1147.[23]YANG C,ZHANG M,LIU J,et al.Effects of buffer capacity on growth,photosynthesis,and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata)[J].Photosynthetica,2009,47(1):55-60.[24]CHEN W,FENG C,GUO W,et al.Comparative effects of osmotic-,salt-and alkali stress on growth,photosynthesis,and osmotic adjustment of cotton plants[J].Photosynthetic,2011,49(3):417-425.[25]苏冬梅,廖飞勇.SO2对菊花光合色素含量和叶绿素荧光特性的影响[J].中南林学院学报,2005,25(6):70-73.[26]YANG C,WANG P,LI C,et al.Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat[J].Photosynthetica,2008,46:107-114.[27]王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响[J].南京农业大学学报,2002,25(4):11-14.[28]赵平,曾小平,彭少麟,等.海南红豆(Ormosia pinnata)夏季叶片气体交换﹑气孔导度和水分利用率的日变化[J].热带亚热带植物学报,2000,8(1):35-42.[29]ASADA K.The water-water cycle in chloroplasts:Scavenging of active oxygens and dissipation of excess photons[J].Annual Review of Plant Physiology and Plant Molecular Biology,1999,50(1):601-639.[30]LIMA A L S,DAMATTA F M,PINHEIRO H A.Photochemical responsesand oxidative stress in two clones of Coffea can phoraunderwater deficit conditions[J].Environmental and Experimental Botany,2002,47(3):239-247.[31]SOUZAR P,MACHADO E C,SILVA J A B,et al.Photosyntheticgas exchange,chlorophyll fluorescence and some associated metabolicchanges in cowpea(Vigna unguiculata) during water stress and recovery[J].Environmental and Experimental Botany,2004,51(1):45-56.[32]范苓,段伟,程杰山,等.水杨酸对高温胁迫下及恢复期间葡萄幼苗叶片光合机构PSⅡ的影响[J].果树学报,2009,26(5):623-627.[33]刘家尧,衣艳军,张承德,等.活体叶绿素荧光诱导动力学及其在植物抗生理研究中的应用[J].曲阜师范大学学报,1997,23(4):80-83.[34]吴旭红,陈晓娥.混合盐碱胁迫条件下甜瓜幼苗的生理响应[J].齐齐哈尔大学学报,2015,31(6):83-86.[35]HU G,LIU Y,DUO T,et al.Antioxidant metabolism variation associatedwith alkali-salt tolerance in thirty switchgrass(Panicum virgatum) lines[J].PLoS One,2018,13(6):e0199681.[36]郭慧娟,胡涛,傅金民.苏打碱胁迫对多年生黑麦草的生理影响[J].草业学报,2012,21(1):118.[37]YLDZTUGAY E,SEKMEN A H,TURKAN I,et al.Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress[J].Plant Physiology and Biochemistry,2011,49(8):816-824.[38]ABOGADALLAH G M.Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress[J].Plant Science,2011,180(3):540-547.[39]GONG B,WEN D,VANDENLANGENBERG K,et al.Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters,nutrient metabolism,and the antioxidant system in tomato leaves[J].Scientia Horticulturae,2013,157(3):1-12.[40]刘丹,李然红,陈鑫.Na2CO3、NaHCO3混合胁迫对红花幼苗生长的影响[J].农业灾害学杂志,2018,8(3):54-55.[41]WANG Q,WU C,XIE B,et al.Model analysing the antioxidant responses of leaves and roots of switch grass to NaCl-salinity stress[J].Plant Physiology and Biochemistry,2012,58:288-296.

Memo

Memo:
-
Last Update: 2020-07-03