|Table of Contents|

Geographical Distribution Prediction and Key Biological Climatic Factors Analysis of  Cymbidium ensifolium in China Based on Maximum Entropy Model and  Geographic Information System(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2017年09
Page:
199-204
Research Field:
Publishing date:

Info

Title:
Geographical Distribution Prediction and Key Biological Climatic Factors Analysis of  Cymbidium ensifolium in China Based on Maximum Entropy Model and  Geographic Information System
Author(s):
LIANG ChunLUO QingLU ZuzhengXIE ZhenxingQIN QianHUANG Xinyi
(Guangxi Subtropical Crops Research Institute,Nanning,Guangxi 530001)
Keywords:
Cymbidium ensifoliummaximum entropy modelgeographic information systemgeographical distribution predictionbiological climatic factor
PACS:
-
DOI:
10.11937/bfyy.201709042
Abstract:
This research studied the geographical distribution and climatic factors of Cymbidium ensifolium in China based on the theory of ecological niche model.The research established the suitable distribution area prediction model and analyzed the key climatic factors of Cymbidium ensifolium with geographic information system,based on maximum entropy model theory and existing domestic geographical distribution data of Cymbidium ensifolium in China.The results showed that ROC test,the training data AUC was 0.977,testing data AUC was 0.944,indicated the model had good accuracy in prediction,with high practical value.Jackknife test showed that the key biological climatic factors for potential distribution of Cymbidium ensifolium were mean temperature of coldest quarter,mean temperature of driest quarter,annual mean temperature,and precipitation of driest month.The major potential distribution areas of Cymbidium ensifolium in China were Nanling Mountains area located in northern Guangdong,northeastern Guangxi,and southern part of Jiangxi and Hunan,southern part of Wuyi Mountain located in northern Fujian and south of Lianhua Mountain in Guangdong.With the analysis of model data and predictions,the aim was to provide scientific advice and theoretical basis for the future research of germplasm resources protection,introduction and domestication and large-scale outdoor cultivation for Cymbidium ensifolium in China.

References:

 

[1]朱根发,王碧青,吕复兵.建兰与纹瓣兰种间杂种胚培养研究[J].热带亚热带植物学报,2005,13(5):447-450.

[2]唐源江,曹雯静,吴坤林.基于SRAP标记的国兰种质资源遗传多样性分析及分子身份证构建[J].中国农业科学,20159:1795-1806.

[3]黄暧爱.GIS在重点兰科植物地理分布格局与保护现状评价中的应用[D].海口:海南大学,2008.

[4]YAAKN~EZ-ARENAS C,GUEVARA R,MARTNEZ-MEYER E,et al.Predicting species abundances from occurrence dataeffects of sample size and bias[J].Ecological Modelling,2014,294:36-41.

[5]JAYNES E T.Information theory and statistical mechanics[J].Physical Review,1957,106(4):620-630.

[6]ELITH J,PHILLIPS S J,HASTIE T,et al.A statistical explanation of Maxent for ecologists[J].Diversity & Distributions,2011,17(1):43-57.

[7]张路.Maxent最大熵模型在预测物种潜在分布范围方面的应用[J].生物学通报,2015,50(11):9-12.

[8]崔晋亮,卫海燕,桑满杰,.基于最大熵模型的蓝莓潜在分布区预测[J].山东农业科学,2015(9):36-41.

[9]TOMLINSON R F.A geographic information system for regional planning[J].J Geogr,1969,78(1):45-48.

[10]中国数字植物标本馆.CVH[EB/OL].http://www.cvh.org.cn,2016.

[11]全球生物多样性信息网络.GBIF[DB/OL].http://www.gbif.org,2016.

[12]Museum of Vertebrate Zoology.World Clim[EB/OL].http://www.worldclim.org,2016.

[13]SWETS J.Measuring the accuracy of diagnostic systems[J].Science,1988,240(4857):1285-1293.

[14]EFRON B,STEIN C.The jackknife estimate of variance[J].Annals of Statistics,1981,9(3):586-596.

[15]黄萍萍,刘霖,陈红玉.建兰的栽培管理[J].现代园艺,2014(8):37.

[16]李明阳,席庆,徐海根.基于WEB数据库和MaxEnt模型的白头叶猴潜在生境评价研究[J].林业资源管理,2010(4):32-36,57

[17]胡秀,吴福川,郭微,.基于MaxEnt生态学模型的檀香在中国的潜在种植区预测[J].林业科学,2015,50(5):27-33.

[18]何淑婷,白碧玉,但佳惠,.基于MaxEnt的南丹参在中国的潜在分布区预测及适生性分析[J].安徽农业科学,2014,42(8):2311-2314.

[19]王娟娟,曹博,白成科,.基于MaxentArcGIS预测川贝母潜在分布及适宜性评价[J].植物研究,2014,34(5):642-649.

[20]弓晓敏,王建军,白建伟.基于MaxentGIS的历山国家级自然保护区原麝栖息地预测[J].山西林业科技,2015,44(3):7-9,23.

[21]韩阳阳,王焱,项杨,.基于Maxent生态位模型的松材线虫在中国的适生区预测分析[J].南京林业大学学报(自然科学版),2015,39(1):6-10.

[22]丁长春,刘伟,罗清,.兰属植物引种及栽培研究[J].文山学院学报,2016,29(3):5-9.

[23]关文灵,李枝林,余朝秀,.云南野生兰花资源的多样性及其引种驯化[J].西南农业学报,2006,19(4):688-691.

[24]刘翠华.江西省野生建兰的ISSR遗传多样性研究[D].南昌:南昌大学,2012.

[25]白坚,胡旭,周淑婷,.47个建兰品种的SRAP 遗传多样性分析[J].植物遗传资源学报,2012,13(3)376-380.

[26]胡薇,黄儒珠,潘晓华,.建兰38个品种的RAPD分析[J].园艺学报,2008,35(2):289-294.

Memo

Memo:
-
Last Update: 2017-05-17