|Table of Contents|

Research Progress on the Molecular Mechanism Underlying Cadmium Hyperaccumulation Tolerance(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2015年19
Page:
170-174
Research Field:
Publishing date:

Info

Title:
Research Progress on the Molecular Mechanism Underlying Cadmium Hyperaccumulation Tolerance
Author(s):
PANG Hongbo1GU Siyu1LI Yueying1CHEN Qiang1ZHANG Yuxin1LIU Ning2
(1.College of Chemistry and Life Science,Shenyang Normal University,Shenyang,Liaoning 110034;2.College of Land and Environment,Shenyang Agricultural University,Shenyang,Liaoning 110161)
Keywords:
hyperaccumulatorscadmium stressphytoremediationmolecular mechanism
PACS:
-
DOI:
10.11937/bfyy.201519043
Abstract:
Contamination of soil by cadmium was a severe environmental problem,which represented a direct contact risk to humans and ecological recipients.Phytoremediation had been regarded as a suitable technique for the pollution control of heavy-metal contaminated soil for green,safe technology and the properties of efficiency,economy and ecological harmony.Hyperaccumulators had recently gained considerable interest because of their potential use in phytoremediation.Understanding the molecular mechanisms of hyperaccumulation may help in enhancing the performance of hyperaccumulators for phytoremediation.This paper reviewed recent insights and existing problems of hyperaccumulators,and the directions of research in this area were introduced.

References:

 

[1]CLEMENS S.Molecular mechanisms of plant metal tolerance and homeostasis[J].Planta,2001,212:475-486.

[2]HALL J L.Cellular mechanisms for heavy metal detoxification and tolerance[J].Journal of Experimental Botany,2002,53:1-11.

[3]DALCORSO G,FARINATI S,FURIN A.Regulatory networks of cadmium stress in plants[J].Plant Signaling and Behavior,2010,5:663-667.

[4]LIN Y F,AAERS M.The molecular mechanism of zinc and cadmium stress response in plants[J].Cellular and Molecular Life Science,2012,69:3187-3206.

[5]KIM D Y,BOVET L,MAESHIMA M,et al.The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance[J].Plant Journal,2007,50:207-218.

[6]SHIM DHWANG J ULEE J,et al.Orthologues of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice[J].Plant Cell,2009,21:4031-4043.

[7]SATARUG S,GARRETT S H,SENS M A,et al.Cadmiumenvironmental exposure,and health outcomes[J].Environmental Health Perspectives,2010118(2)182-190.

[8]NAWROT TNAWROT TPLUSQUIN M,et al.Environmental exposure to cadmium and risk of cancera prospective population-based study[J].Lancet Oncology,2006,7(2):119-126.

[9]CHANEY R L,LI Y M,ANGLE J S,et al.ImProving metal hyper accumulator wild Plants to develop commercial Phy-toextraction systemsApproaches and Progress In:Terry N and Bacuelos G.S.eds.Phytoremediation of Trace Elements[M].Miami:USA Ann Arbor Press,1999.

[10]CHANEY R LMALIK MLI Y M,et al.Phytoremediation of soil metals[J].Current Opinion in Biotechnology,1997,8(3):279-284.

[11]CHANEY R L,ANGLE J S,MCINTOSH M S,et al.Using hyperaccumulator plants to phytoextract soil Ni and Cd[J].Zeitschrift Naturforschung,2005,60:190-198.

[12]PILON-SMITS E.Phytoremediation[J].Annual Review of Plant Biology,2005,56:15-39.

[13]BAKER A J M,BROOKS R R.Terrestrial higher plants which hyperaccumulate metallic elements.A review of their distribution,ecology and phytochemistry[J].Biorecovery,1989,181-126.

[14]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.

[15]BROOKS R R.Plants that Hyperaccumulate heavy metals:their role in phytoremediatin,microbiologyarchaeology,mineral exploration and phytomining[M].Oxford,UK:CAB International,1998.

[16]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1):65-72.

[17]BROWN S L,CHANEY R L,ANGLE J S,et al.Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil[J].Journal of Environmental Quality,1994,23:1151-1157.

[18]WENZEL W WJOCKWER F.Accumulator of heavy metals in plants grown on mineralised soils of the Austrian Alps[J]. Environmental Pollution,1999,104:145-155.

[19]DAHMANI-MULLER H,VAN OORT F,GLIE B,et al.Strategies of heavy metal uptake by three plant species growing nearametal smelter[J].Environmental Pollution,2000,19:231-238.

[20]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis):一种新的镉超富集植物[J].科学通报,2003,48(19)2046-2049.

[21]熊愈辉,杨肖娥,叶正钱,.东南景天对镉、铅的生长反应与积累特性比较[J].西北农林科技大学学报(自然科学版)2004,32(6):101-106.

[22]YANG X E,LONG X X,YE H B,et al.Cadmium tolerance and hyperaccumulation in a new n-hyperaccumulating plant species (Sedum alfredii Hance) [J].Plant and Soil,2004,259:181-189.

[23]魏树和,周启星,王林,.一种新发现的镉超积累植物龙葵(Solanum nigrum L.) [J].科学通报,2004,49(24):2568-2570.

[24]TOLR R,PONGRAC P,POSCHENRIEDER C,et al.Distinctive effects of cadmium on glucosinolate profiles in Cd hyper accumulator Thlaspi praecox and non-hyper accumulator Thlaspi arvense[J].Plant Soil,2006,288:333-341.

[25]WEI S H,ZHOU Q X.Phytoremediation of cadmium-conta mina ted soils by Rorippa globosa using two-phase planting [J].Environmental Science and Pollution Research,2006,13:151-155.

[26]聂发辉.镉超富集植物商陆及其富集效应[J].生态环境,2006,15(2):303-306.

[27]SUN Y BZHOU Q XLIU W T,et al.Joint effects of arsenic and cadmium on plant growth and metal bioaccumulationa potential Cd-hyperaccumulator and As-excluder Bidens pilosa L[J].Journal of Hazardous Materials,2009,165:1023-1028.

[28]PILON-SMITS E,PILON M.Phytoremedk isolation of metals using transgenic plants[J].Critical Reviews in Plant Sciences,2002,21439-456.

[29]XU J,SUN J,DU L,et al.Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum[J].New Phytologist,2012,96:110-124.

[30]WEBER M,TRAMPCZYNSKA A,CLEMENS S.Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri[J].Plant,Cell and Environment,2006,29:950-963.

[31]陈英旭.土壤重金属的植物污染化学[M].北京:科学出版社,2008.

[32]VERBRUGGEN N,HERMANS C,SCHAT H.Molecular mechanisms of metal hyperaccumulation in plants[J].New Phytologist,2009181:759-776.

[33]UENO D,YAMAJI N,KONO I,et al.Gene limiting cadmium accumulation in rice[J].Proceedings of the National Academy of Sciences USA,2010,107 (38):16500-16505.

[34]PENCE N S,LARSEN P B,EBBS S D,et al.The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens[J].Proceedings of the National Academy of Sciences USA,2000,97:4956-4960.

[35]SHIRAISHI E,INOUHE M,JOHO M,et al.The cadmium-resistant geneCAD2,which is a mutated putative copper-transporter gene (PCA1),controls the intracellular cadmium-level in the yeast S.cerevisiae[J].Current Genetics2000,37:79-86.

[36]LEE S,MOON J S,KO T S,et al.Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress[J].Plant Physiology2003a131656-663.

[37]LEE S,PETROS D,MOON J S,et al.Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation[J].Plant Physiology and Biochemistry,2003b,41:903-910.

[38]MILLS R F,KRIJGER G C,BACCARINI P J,et al.Functional expression of AtHMA4,a P1B-type ATPase of the Zn/Co/Cd/Pb subclass [J].Plant Journal,2003,35:164-176.

[39]GRAVOT A,LIEUTAUD A,VERRET F,et al.AtHMA3,a plant P1B-ATPase,functions as a Cd/Pb transporter in yeast[J].FEBS Letters,2004,61:22-28.

[40]SONG W Y,MARTINOIA E,LEE J,et al.A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis[J]. Plant Physiology,2004,135:1027-1039.

[41]KIM D Y,BOVET L,KUSHNIR S,et al.AtATM3 is involved in heavy metal resistance in Arabidopsis[J].Plant Physiology2006,140922-932.

[42]GUO W J,MEETAM M,GOLDSBROUGH P B.Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance[J].Plant Physiology2008,146:1697-1706.

[43]LOCHLAINN S,BOWEN H C,FRAY R G,et al.Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens[J/OL].PLoS One2011,6e17814.

[44]PARK J,SONG W Y,KO D,et al.The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury[J].Plant Journal,2012,69:278-288.

[45]SASAKI A,YAMAJI N,YOKOSHO K,et al.Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J].Plant Cell,2012,24:2155-2167.

[46]CHEN J,YANG L B,GU J,et al.MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana[J].New Phytologist,2015,205(2):570-582.

[47]BECHER M,TALKE I N,KRALL L,et al.Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri[J].Plant Journal2004,37(2):251-268.

[48]HANIKENNE M,TALKE I N,HAYDON M J,et al.Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4[J].Nature,2008,453:391-395.

[49]BARABASZ A,KRA¨MER U,HANIKENNE M,et al.Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply[J].Journal of Experimental Botany,2010,61:3057-3067.

[50]BARABASZ A,WILKOWSKA A,RUSZCZYNSKA A,et al.Metal response of transgenic tomato plants expressing P1B-ATPase[J].Physiologia Plantarum,2012,145:315-331.

[51]SIEMIANOWSKI O,MILLS R F,WILLIAMS L E,et al.Expression of the P1B-type ATPase AtHMA4 in tobacco modifies Zn and Cd root to shoot partitioning and metal tolerance[J].Plant Biotechnolog-y Journal,2011,9:64-74.

[52]OZSOLAK F,MILOS P M.RNA sequencing:advanceschallenges and opportunities[J].Nature Reviews Genetics,201112(2):87-98.

[53]HERBETTE S,TACONNAT L,HUGOUVIEUX V,et al.Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots[J].Biochimie200688:1751-1765.

[54]ROMERO-PUERTAS M C,CORPAS F J,RODRIGUEZ-SERRANO M,et al.Differential expression and regulation of antioxidative enzymes by cadmium in pea plants[J].Journal of Plant Physiology2007,164:1346-1357.

[55]TAMAS L,DUDIKOVA J,DURCEKOVA K,et al.Alterations of the gene expression,lipid peroxidationproline and thiol content along the barley root exposed to cadmium[J].Journal of Plant Physiology,2008,165:1193-1203.

[56]CAO F,CHEN F,SUN H,et al.Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley[J].BMC Genomics2014,15:611.

[57]GAO J,SUN L,YANG X,et al.Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance[J/OL].PLoS One,2014,8:e64643.

[58]TANG M,MAO D,XU L,et al.Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings[J]. BMC Genomics,2014,15:835.

[59]WEI W,ZHANG Y,HAN L,et al.A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco[J].Plant Cell Reports2008,27:795-803.

[60]JACOBY M,WEISSHAAR B,VICENTE-CARBAJOSA J,et al.bZIP transcri-ption factors in Arabidopsis[J].Trends in Plant Science,2002,7106-111.

[61]TANG W,CHARLES T M,NEWTON R J.Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth[J].Plant Molecular Biology,2005,59:603-617.

[62]VAN DE MORTEL J E,SCHAT H,MOERLAND P D,et al.Expression differences for genes involved in lignin,glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens[J].Plant Cell and Environment,2008,31:301-324.

[63]SINGH B K,FOLEY R C.ONATE-SANCHEZ L.Transcription factors in plant defense and stress responses[J].Current Opinion in Plant Biology,2002,5:430-436.

[64]LEE R,FEINBAUM R,AMBROS V.The C.elegans heterochronic gene lin-4 encodes small RNA with antisense complement arityto lin-14[J].Cell,1993,75:843-854.

[65]CHEN X.A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J].Science2004,303:2022-2025.

[66]DING Y F,ZHU C.The role of microRNAs in copper and cadmium homeostasis[J].Biochemical and Biophysical Research Communications2009,386(1):6-10.

[67] MENDOZA-SOTO A B,SNCHEZ F,HERNNDEZ G.MicroRNAs as regulators in plant metal toxicity response[J].Frontiers in Plant Science,2012,3:105.

[68] YANG Z M,CHEN J.A potential role of microRNAs in plant response to metal toxicity[J].Metallomics,2013,5(9):1184-1190.

[69] ZHOU Z S,SONG J B,YANG Z M.Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium[J].Journal of Experimental Botany,2012a,63(12)4597-4613.

[70] ZHOU Z S,ZENG H Q,LIU Z P,et al.Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal[J].Plant Cell and Environment2012b,35(1):86-99.

[71] HUANG S Q,XIANG A L,CHE L L,et al.A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress[J].Plant Biotechnology Journal,2010,8(8):887-899.

[72] ZHANG L W,SONG J B,SHU X X,et al.MiR395 is involved in detoxification of cadmium in Brassica napus[J].Journal of Hazardous Materials,2013,250:204-211.

Memo

Memo:
-
Last Update: 2015-11-06