HAO Shengjie,HUO Jiaxing,LI Yuye,et al.Effects of Silicon and Arbuscular Mycorrhiza on the Roots of Glycyrrhiza uralensis Under Drought Stress[J].Northern Horticulture,2024,(20):99-109.[doi:10.11937/bfyy.20240565]
干旱胁迫下硅和丛枝菌根对甘草根的影响
- Title:
- Effects of Silicon and Arbuscular Mycorrhiza on the Roots of Glycyrrhiza uralensis Under Drought Stress
- 文章编号:
- 1001-0009(2024)20-0099-11
- Keywords:
- drought stress; Glycyrrhiza uralensis; application of Si; arbuscular mycorrhizal fungi; secondary metabolites
- 分类号:
- S 567.7+1
- 文献标志码:
- A
- 摘要:
- 以甘草为试材,采用2个外源硅(Si)浓度水平、2个丛枝菌根真菌(AMF)接种水平和5个不同湿度处理的方法进行随机组合,并对甘草的产量、矿物质吸收、抗氧化潜力和次生代谢产物进行检测评估,研究了干旱胁迫下Si和AMF对甘草根系的影响,以期为甘草产业的可持续发展提供参考依据。结果表明:在干旱胁迫条件下,与对照相比,甘草的根长、直径和干质量(DG)显著降低(P<0.05)。Si和AMF显著(P<0.05)增加了根面积并提高了甘草根系的定殖水平。在G40处理下,Si和AMF的交互作用显著提高了甘草酸(GA)含量(26.62 mg·g-1DG)。在严重干旱条件下,甘草的总黄酮(TF)和酚类物质(TP)含量减少,但Si和AMF显著增加了没食子酸(16.46 mg·g-1DG)和反式阿魏酸(SA)(1.11 mg·g-1DG)的含量。此外,Si和AMF的协同作用对根系中的氮(N)和磷(P)浓度产生了正向影响,分别增加了53.51%和74.07%。在低灌水条件下,根系中的磷和硅浓度显著增加,而在Si处理的植物中,钾(K)浓度在G100、G80和G40处理下也有所增加,幅度为38.5%~44.7%。综上,外源Si和AMF对改善植物生长和增强甘草代谢物积累具有协同作用,有助于减轻干旱胁迫的不利影响,为甘草产业应对干旱问题提供了重要的启示。
- Abstract:
- Taking Glycyrrhiza uralensis as the test material,two levels of exogenous silicon (Si) concentration,two levels of arbuscular mycorrhizal fungi (AMF) inoculation,and five different humidity treatments were randomly combined to detect and evaluate the yield,mineral absorption,antioxidant potential,and secondary metabolites of licorice.The effects of Si and AMF on Glycyrrhiza uralensis root system under drought stress were studied,in order to provide reference for the sustainable development of Glycyrrhiza uralensis industry.The results showed that,under drought stress,the root length,diameter,and dry weight (DG) of licorice significantly decreased compared to control group (P<0.05).However,Si and AMF significantly increased root area (P<0.05) and root colonization levels (P<0.05).Under the G40 treatment,the interaction between Si and AMF significantly increased the glycyrrhizic acid (GA) content (26.62 mg·g-1DG).Under severe drought conditions,total flavonoids (TF) and phenolic compounds (TP) decreased,but the application of Si and AMF significantly increased the levels of gallic acid (16.46 mg·g-1DG) and trans-ferulic acid (SA) (1.11 mg·g-1DG).Furthermore,the synergistic effects of Si and AMF positively impacted nitrogen (N) and phosphorus (P) concentrations in the roots,increasing them by 53.51% and 74.07%,respectively.Under low irrigation levels,the concentrations of phosphorus and silicon in the roots significantly increased,and potassium (K) concentrations also increased under Si treatment in the G100,G80,and G40 treatments,ranging from 38.5% to 44.7%.This study demonstrates that exogenous Si and AMF have a synergistic effect in improving plant growth and enhancing the accumulation of metabolites in licorice,providing important insights for mitigating the adverse effects of drought on the licorice industry.
参考文献/References:
[1]王雪,邱黛玉,袁菲菲,等.三种药用甘草产种特性及适宜采种期研究[J].中药材,2023,46(9):2131-2135.[2]李伟,钟鹏,刘泽东,等.甘草的药理作用及其在畜牧业的应用[J].中国饲料,2023(17):49-55,71.[3]魏胜利,高雪岩,王文全.开展甘草产业技术研究促进三北地区三农经济发展[J].中国中药杂志,2009,34(24):3158-3161.[4]刘裕,甘庭宇,刘俊俊.中国西部野生药用植物资源可持续开发利用与管理[J].农村经济,2016(4):115-119.[5]张青,王辰,孙宗湜,等.土壤微生物生物量及多样性影响因素研究进展[J].北方园艺,2022(8):116-121.[6]田霞,王媛,张雨,等.旱作区农田土壤AM真菌对长期有机无机施肥的响应[J].中国生态农业学报(中英文),2024,32(2):297-308.[7]邹原东,高琼,毕红艳,等.不同丛枝菌根真菌对甘草生长和保护酶活性的影响[J].北方园艺,2017(12):162-166.[8]麦格皮热提古丽·达吾提,王海鸥,陈晓楠,等.干旱胁迫下丛枝菌根真菌对疏叶骆驼刺和多枝柽柳生长及生理的影响[J].西北植物学报,2023,43(11):1897-1909.[9]王莹,杜鹏飞,李娟.不同微生物菌肥对甘草光合生理、黄酮含量及土壤微生物的影响[J].北方园艺,2023(18):103-110.[10]郭振宇,索常凯,蒲敏,等.硅提高旱稻生理功能和硒耐受性的机理[J].植物营养与肥料学报,2023,29(12):2282-2298.[11]侯彦林,郭伟,朱永官.非生物胁迫下硅素营养对植物的作用及其机理[J].土壤通报,2005,36(3):426-429.[12]蒋待泉,王红阳,康传志,等.复合胁迫对药用植物次生代谢的影响及机制[J].中国中药杂志,2020,45(9):2009-2016.[13]舒志万,韩睿,王智博,等.盐碱土壤中嗜盐微生物促进植物生长与代谢调节研究进展[J].江苏农业科学,2022,50(16):27-36.[14]张姝倩,刘晓明.菌根真菌对植物生长和养分吸收的影响及其在农业中的应用潜力[J].分子植物育种,2023,21(19):6553-6559.[15]董雪,许德浩,韩春霞,等.天然沙冬青器官生态化学计量特征对异质生境的响应[J].生态学报,2024,44(2):858-869.[16]卢骏.甘草和人参不定根代谢调控及糖基转移酶UGT71A29的功能研究[D].天津:天津大学,2020.[17]喻志,梁坤南,黄桂华,等.丛枝菌根真菌对植物抗旱性研究进展[J].草业科学,2021,38(4):640-653.[18]刘娜,赵泽宇,姜喜铃,等.菌根真菌提高植物抗旱性机制的研究回顾与展望[J].菌物学报,2021,40(4):851-872.[19]徐国前,张振文,郭安鹊,等.植物多酚抗逆生态作用研究进展[J].西北植物学报,2011,31(2):423-430.[20]曹亚静,赵美丞,郑春燕,等.根际微生物介导的植物响应干旱胁迫机制研究进展[J].中国生态农业学报(中英文),2023,31(8):1330-1342.[21]祝英,熊俊兰,吕广超,等.丛枝菌根真菌与植物共生对植物水分关系的影响及机理[J].生态学报,2015,35(8):2419-2427.[22]张义飞,王平,毕琪,等.不同强度盐胁迫下AM真菌对羊草生长的影响[J].生态学报,2016,36(17):5467-5476.[23]金彩悦,李海林,瞿广飞,等.土壤微生物代谢模式及其环境影响研究进展[J].环境化学,2023,42(9):3188-3198.[24]王莹,杜鹏飞,李娟.不同微生物菌肥对甘草光合生理、黄酮含量及土壤微生物的影响[J].北方园艺,2023(18):103-110.[25]任鸿濛,李迎超,贾仕军,等.植物生长调节剂浸种对甘草种子萌发的影响[J].北方园艺,2023(17):110-115.
相似文献/References:
[1]方 晶.高压电场对干旱胁迫下黄瓜种子萌发的影响[J].北方园艺,2014,38(13):41.
FANG Jing.Effect of High Voltage Electric Field on Germination of Cucumber Seeds Under Drought Stress[J].Northern Horticulture,2014,38(20):41.
[2]王贵平,王金政,薛晓敏,等.叶面喷施甜菜碱对干旱胁迫下苹果幼树[J].北方园艺,2014,38(12):10.
WANG Gui-ping,WANG Jin-zheng,XUE Xiao-min,et al.Effect of Spraying Glycinebetaine on Physiological Responses of Apple Young Trees Under Drought Stress[J].Northern Horticulture,2014,38(20):10.
[3]常桂英,孙立梅,赵 雪,等.长白山刺果甘草与甘草化学成分的比较研究[J].北方园艺,2014,38(10):146.
CHANG Gui-ying,SUN Li-mei,ZHAO Xue,et al.Comparative Study on the Chemical Constituents of Changbai Mountain Glycyrrhiza pallidiflora and Glycyrrhiza uralensis [J].Northern Horticulture,2014,38(20):146.
[4]张 爽,赵 纯,董 然,等.槭叶草对PEG-6000模拟干旱胁迫的生理响应[J].北方园艺,2013,37(22):74.
ZHANG Shuang,ZHAO Chun,DONG Ran,et al.Physiological Responses of Mukdenia rossii Under PEG-6000 Drought Stress[J].Northern Horticulture,2013,37(20):74.
[5]蔡喜悦,陈晓德,刘成,等.外源钙对干旱胁迫下复羽叶栾树幼苗水分及光合特性的影响[J].北方园艺,2013,37(10):58.
CAI Xi-yue,CHEN Xiao-de,LIU Cheng,et al.Effect of Drought Stress with Exogenous Ca2+on Relative Water Content and the Characteristics of Photosynthesis of Koelreuteria paniculata[J].Northern Horticulture,2013,37(20):58.
[6]梁蕊芳,康利平,徐 龙,等.干旱胁迫对樱桃番茄幼苗叶片生长特性的影响[J].北方园艺,2013,37(23):12.
LIANG Rui-fang,KANG Li-ping,XU Long,et al.Effect of Drought Stress on Growth Characteristics of Leaves in Lycopersicom esculentum var. cerasiforme Seedlings[J].Northern Horticulture,2013,37(20):12.
[7]王少平,黄超.切花菊‘黄中黄’对干旱胁迫的生理响应[J].北方园艺,2013,37(15):64.
WANG Shao-ping,HUANG Chao.Physiological Response of Cut Chrysanthemum ‘Huangzhonghuang’ to Drought Stress[J].Northern Horticulture,2013,37(20):64.
[8]董延龙,常缨.干旱胁迫对五种观赏蕨类植物叶绿素荧光特性的影响[J].北方园艺,2013,37(15):66.
DONG Yan-long,CHANG Ying.Effects of Drought Stress on Chlorophyll Fluorescence Characteristics of Five Species of Ornamental Ferns[J].Northern Horticulture,2013,37(20):66.
[9]余蕾.微波法提取甘草中类黄酮的工艺研究[J].北方园艺,2014,38(07):130.
YU Lei.Research on Flavonoid Extraction From Glycyrrhiza uralensis Fisch by Microwave Method[J].Northern Horticulture,2014,38(20):130.
[10]岳桦,石喜梅.聚乙二醇模拟干旱胁迫对兔儿伞生理特性的影响[J].北方园艺,2013,37(11):56.
YUE Hua,SHI Xi-mei.Effects of Drought Stress Simulated by PEG-6000 on Physiological Characteristics of Syneilesis aconitifolia[J].Northern Horticulture,2013,37(20):56.
备注/Memo
第一作者简介:郝胜杰(2003-),男,本科,助理实验员,现主要从事中药学、生物与医药等研究工作。E-mail:haosj@st.gsau.edu.cn.基金项目:国家中药材产业技术体系建设专项资金资助项目(CARS-21);甘肃农业大学SIETP资助项目(202301058)。收稿日期:2024-02-02