冬 枣 组 织 培 养 的 消 毒 方 法

刘雪红,刘俊华,张孝霖

(滨州学院 生命科学系,山东 滨州 256603)

摘 要: 为了优化冬枣组织培养的消毒方法, 比较分析了乙醇、升汞、次氯酸钠和吐温等 4 种 消毒剂对冬枣茎尖、叶片、茎段以及叶柄等组织培养的消毒效果。结果表明:70%乙醇30 s.0.1% 升汞加 3~5 滴吐温 20 消毒 6 min 既能 减少污染,又能提高外植体的成活率,综合效果最佳。

关键词. 冬枣: 组织培养: 消毒方法

中图分类号: S 665, 103.6 文献标识码: B 文章编号: 1001-0009(2009)02-097-02

冬枣(Ziziphus jujuba Mill cv. dongzao)又名冻枣、 雁来红、苹果枣、冰糖枣、是我国独有的优良资源,由于 成熟期晚, 所以常称为冬枣。冬枣是目前公认的鲜食优 质栽培品种。冬枣不仅有其它枣类的抗盐碱、耐瘠薄的 特点, 而且营养丰富。北京营养源研究所 1994 年沾化冬 枣分析表明: 冬枣内除含有其他枣果中的营养物质之 外, 还含有人体所需的 19 种氨基酸和维生素 A、B、C、D 等多种维生素,其中维生素 C 的含量高达 $1079.1\mu_g/L$ 。 冬枣还含有钾、钠、铁、铜等多种微量元素以及抗癌物质 环磷酸腺苷、环磷酸鸟苷等门。因此,冬枣的需求量在 不断增加,但是由于冬枣资源缺乏,而且用常规方法播 种、嫁接、扦插等方式繁殖比较困难, 并日靠嫁接繁殖受 到季节的限制, 日部分存在后期不亲和现象, 其砧木还 会发生大量的萌蘖, 难以控制 3。 所以就影响了优良枣 品种的大面积发展,但组织培养可以克服这些缺点。而 组织培养的关键环节就是对材料进行消毒。

1 材料与方法

1.1 材料

供试品种为 冬枣 (Ziziphus jujuba Mill ev. dongzao)的水培茎和室外茎,材料取自山东省沾化县冬枣研 究所。

参照黄建等 25] 的文献, 以 MS 为基本培养基, 另添 加1.2 mg/L 6-BA 和 0.2 mg/L IBA, 消毒剂有 70%乙 醇 0.1%升汞, 2.5%次氯酸钠溶液和吐温 20。

1.2 试验设计

1.2.1 乙醇和升汞处理 70%乙醇处理 30 s, 0.1%升 汞处理分 6 min 和 8 min 还有升汞两段消毒 2.5 min+3

第一作者简介: 刘雪红(1976), 女, 硕士, 讲师, 主要从事植物细胞 工程教学与研究工作。E-mail: liuxue-hong@tom.com。 基金项目: 滨州学院自然科学基金资助项目(BZXYQNLG2005

收稿日期: 2008-08-18

015).

次无菌水+3 min。2.5%次氯酸钠处理 5 min。10 个处 理, 重复 5 次, 共 50 瓶(见表 1)。

乙醇、升汞和次氯酸钠处理设计 表 1

处理	70% 乙醇 / s	0.1%升汞	2.5%次氯酸钠	外植体类型
A_1	30	0 s	0 s	室外茎尖
B_1	0	8 min	0 s	室外茎尖
C_1	0	0 s	5 min	室外茎尖
D_1	0	2.5 min+3 min	0 s	室外茎尖
E_1	30	6 min	0 s	室外茎尖
\mathbf{F}_{1}	30	0 s	0 s	水培茎尖
G_1	0	8 min	0 s	水培茎尖
H_1	0	0 s	5 min	水培茎尖
I_1	0	2.5 min+3 min	0 s	水培茎尖
J_1	30	6 min	0 s	水培茎尖

1.2.2 加吐温 20 处理 加 3~5 滴吐温 20 分 4 个处 理,每个处理重复6次,共24瓶,处理情况详见表2。

加吐温 20 处理 表 2

处理	70% 乙醇 / s	0.1% 升汞/ min	吐温20	外植体类型
A2	30	6	加	室外茎尖
B2	30	6	加	水培茎尖
C2	30	6	不加	室外茎尖
D2	30	6	不加	水培茎尖

1.2.3 不同外植体的处理设计 冬枣水培茎尖幼嫩的茎 段、茎尖、叶片和叶柄等材料用 70% 乙醇 30 s, 0.1% 升汞 加 3~5 滴吐温 20 消毒 6 min, 各处理重复 5 次 共 20 瓶。

1.3 试验过程、指标和统计分析方法

试验用的水培茎尖于 4 月份田间采集 1 a 生休眠枣 头,清洗干净后在光照培养箱内进行水培,3周后,水培 芽抽生约 10 cm 时,剪下新生枣头用洗洁精浸泡 5~ 8 min, 流水冲洗 2 h, 将清洗好的材料放置到超净工作台 上,供试验材料用。室外茎尖于天气晴朗的中午采集生 长旺盛的冬枣新生枣头与水培的新生枣头做同样的处 理。在无菌的环境条件下消毒,用无菌水反复冲洗3~4 次后进行切段 最后接种。接种后均置于培养室培养。 接种时各类型外植体剪成不同规格,叶片为 0.5 cm× 0.5 cm, 茎段为 1.0 cm, 叶柄 0.8 cm, 茎尖为 1.0 cm。每 瓶处理放 6 个小段, 培养温度为(28±2) [℃], 光照强度 2 000 lx, 光照 12 h/d, 基本培养基为MS+1.2 mg/L 6-BA+0.2 mg/L IBA+蔗糖+琼脂。

从接种完起,每天观察其生长和污染情况,30 d 后统计其污染率,并计算其成活率,进行分析得出最佳方案。

2 结果与分析

2.1 乙醇、升汞和次氯酸钠对消毒效果的影响

从表 3 可知, 对室外茎尖和水培茎尖来说 B_1 和 G_1 的消毒效果最好, 污染率分别为 $(27.8\pm5.5)\%$ 和 $(11.1\pm3.5)\%$; 而从水培茎尖和室外茎尖来看, 各种处理方案中都是水培茎尖优于室外茎尖。 因此在选择外植体时水培茎尖是最佳的。

表 3 乙醇、升汞和次氯酸钠对消毒效果的影响

处理	70% 乙醇 / s	0.1%升汞	2.5%次氯酸钠	污染率/ %	成活率/ %
A_1	30	0 s	0 s	94. 4 ± 3.5^{a}	41.7±3.7a
B_1	0	8 min	0 s	27.8 \pm 5.5 $^{\circ}$ e	72. $2\pm 3.5b$
C_1	0	0 s	5 min	69.5±2.8b	19.5 \pm 2.8 $^{\rm c}$
D_1	0	2.5 min+3 min	0 s	44.4 ± 5.6^{d}	69.4 \pm 6.7 $^{\rm b}$
E_1	30	6 min	0 s	30.6 ± 5.1 ^{cd}	86.1 \pm 5.1 $^{\mathrm{be}}$
F_1	30	0 s	0 s	36.1 ± 2.8 ^{ed}	77.8 \pm 3.5 be
G_1	0	8 min	0 s	11.1 \pm 3.5 $_{\rm e}$	75.0 \pm 5.7be
H_1	0	0 s	5 min	25.0 \pm 3.7 $^{\rm ce}$	30.6 \pm 5.1 $^{\mathrm{ac}}$
I_1	0	2.5 min+3 min	0 s	19.5 \pm 2.8 $^{\rm e}$	80.6 \pm 5.1 $^{\mathrm{be}}$
J_1	30	6 min	0 s	13.9±5.1e	91.7 \pm 3.7de

注 小写字母不同表示差异显著(P≤0.01)。

虽然用 0.1%升汞单独消毒 8 min 污染最少,效果最佳,但成活率却比 70%乙醇处理 30 s 再用 0.1%升汞处理 6 min 的低 $15\%\sim20\%$ 。因此,综合考虑消毒效果和成活率两方面,应是水培茎尖用 70%乙醇处理 30 s,再用 0.1%升汞处理 6 min 效果最佳。

2.2 吐温 20 对消毒效果的影响

表 4 吐温 20 对消毒效果的影响

处理	吐温 20	外植体类型	污染率/ %	成活率/ %
A ₂	加	室外茎尖	27.8 \pm 5.5a	88.9 \pm 3.5ab
B_2	加	水培茎尖	8.4±3.7 ^b	94.4 \pm 3.5 $^{\rm b}$
C_2	不加	室外茎尖	30.6 ±5.1 a	80. 5 ± 2 . $8a$
D_2	不加	水培茎尖	11.1±3.5♭	91.7 \pm 5.7ab

注 小写字母不同代表差异显著(P< 0.05)。

从表 4 可见, 加吐温 20 比不加吐温 20 的污染率明显下降, 加吐温 20的 水培 茎尖污染率仅为 $(8.4\pm$

3.7)%,不加的为 (11.1 ± 3.5) %,成活率也上升了 $5\% \sim 10\%$,以后的生长分化状况也比较好。

2.3 不同外植体取材对组织培养的影响

从表 5 可见, 茎段和茎尖的污染率要比叶片和叶柄的稍高些, 但是它们之间不存在显著差异。而茎段和茎尖的成活率要比叶片和叶柄的高出约 $10\% \sim 15\%$, 这可能与茎尖的分生组织分生能力比较旺盛有关, 所以有利于外植体的成活。

表 5 不同外植体对消毒效果的影响

	污染率/ %	成舌率/ %
茎段	19.5±2.8a	91. 7±3. 7ab
茎尖	16.7±4.3a	97. 2 ± 2 . 8^a
叶片	13.9±5. 1ª	83.5 \pm 6.0 $^{\rm b}$
叶柄	11.1±5.6a	80.6±5.1b

注:小写字母不同代表差异显著(P<0.05)。

3 讨论与结论

试验研究了不同消毒方法对冬枣消毒效果的影响结果表明: 70%乙醇 30 s, 0.1%升汞加 3~5 滴吐温 20 消毒 6 min 既能减少污染, 又能提高外植体的成活率。这与任敬民等^[3] 的试验结果是一致的。70%乙醇比其它浓度的乙醇具有更强的杀菌力和穿透力, 而且有湿润作用, 可排除材料上的空气, 利于其它消毒剂的渗入^[4], 所以与升汞配合使用消毒效果更好。升汞有剧毒, 消毒效果好, 只是消毒后难以去除残余的汞, 所以消毒后要多次冲洗, 以减少对组织细胞造成的伤害。吐温 20 的作用原理是能使消毒药剂更好地与材料表面接触, 促进消毒药剂与材料的结合, 加快消毒进程, 使消毒效果更好^[3]。

参考文献

- [1] 李守勇 续九如,张华丽.冬枣研究进展[3].中国果树.2004(1):47-51.
- [2] 黄建, 马锋旺, 攀军锋, 等. 枣树离体叶片不定芽再生体系建立的研究[1]. 西北植物学报, 2006, 26(5); 942-948.
- [3] 任敬民 陈跃进,郭丽明.台湾青枣组织培养的消毒方法 JJ. 湖北农业科学, 2004(1):65-68.
- [4] 徐化凌 陈纪香, 于德花, 等. 沾化冬枣组培快繁技术研究[J]. 山东林 业科技, 2003(5): 29-30.
- [5] 王玉珍 冬枣茎尖离体培养成苗[J]. 植物生理学通讯 1996, 32(1): 26:32
- [6] 曹孜义 刘国民 实用植物组织培养技术教程[M]. 兰州. 甘肃科学技术出版社, 1996, 39.

Sterilized Methods on Tissue Culture of Winter Ziziphus Jujuba

LIU Xue hong, LIU Jumhua, ZHANG Xiao-lin

(Department of Life Science Binzhou University, Binzhou, Shandong 256603, China)

Abstract: Effects of sterilization on explants and growth on callus were studied in the stem tip, lamina, stem segment and leafstalk tissue culture of winter *Ziziphus jujuba* by means of 70% alcohol, mercuric chloride, sodium hypochlorite and tween-20 in order to establish the sterilization method of the tissue culture. The result indicated that 70% alcohol sterilized the explants for 30 seconds, 0.1% mercuric chloride with 3~5 drops of tween-20 sterilized the explants for six minutes, which not only decreased the explants pollution rate, but also promoted the survival rate of the explants.

Key words: Ziziphus jujuba; Tissue culture; Sterilized methods