白杨树菇桑枝屑栽培种培养基的筛选

蔡爱群,徐伟

(韶关学院 英东生物工程学院 广东 韶关 512005)

摘 要: 试验利用粤北地区可再生资源桑枝屑为主料制作白杨树菇栽培种,采用 $L^8(2^7)$ 正交试验设计,从麸皮、花生饼、玉米粉 3 個素 2 个水平,并从萌发时间、满袋时间、菌丝日平均生长速度、密度、长势 5 方面比较,筛选出最佳培养基。结果表明: 配方 6 为试验最适合白 杨树菇菌丝生长的栽培种培养基配方。

关键词: 粤北地区; 桑枝; 培养基; 白杨树菇

中图分类号: S 792.11 文献标识码: A 文章编号: 1001-0009(2008)02-0240-02

白杨树菇又名白色茶薪菇、雪莲菇等",而白色茶薪菇中文名——柱状环锈伞,别名茶树菇、柱状田头菇、柳环菇,隶属于担子菌亚门,层菌纲、伞菌目,粪锈伞科,田蘑属。该菇与杨树菇(又名柱状田头菇)、柳松苹为相似种。夏、秋间自生于杨树、柳树、榆树、榕树等阔叶树的枯干、树洞上,是名贵珍稀的食用菌³。子实体多丛生、白厚。菇形美观、味纯清香,口感佳。子实体富含葡聚糖、菌蛋白、各种氨基酸、矿物质等成分,具有抗衰老、降低胆固醇、防癌和抗癌等功能³。

桑枝是蚕桑生产中最大量的副产物,在广东年产桑枝鲜重达 1000 kg/667m²以上,干物重 700 kg/667m²以上,干物重 700 kg/667m²以上,一般只作为燃料用。桑树是木本植物,桑枝木纤维化程度高,经加工后可作为食用菌和药用菌的培养料,也可达到保护森林的作用,是一种经济的资源节约型、环境友好型生产方式,值得提倡⁴。在林木禁伐的前提下,粤北地区的曲江、始兴、乳源、翁源等地均种桑养蚕,常年培植 3333 hm²桑田,每年正常裁剪的桑枝约 10万 t。

近年来,许多地区积极发展桑枝培育食用菌产业,利用桑枝制作栽培种培育香菇、平菇、木耳、银耳等食用菌在一些地区已经获得成功,特别是在广西地区已经开发出桑枝培育榆黄蘑新技术,成功利用桑枝制作栽培种培育了一批灵芝、猴头菇等许多珍稀食用菌。但是在国内很少有利用桑枝屑制作白杨树菇栽培种报道。试验则利用桑枝屑为主料进行白杨树菇栽培种制作,旨在筛选最适的配方。

1 材料和方法

1.1 材料

1.1.1 菌种 白杨树菇菌种和发酵菌种:均引自广东省

第一作者简介: 蔡爱群(1965-), 女, 广东人, 副教授, 主要从事微生物学、食用 菌学的教学和研究工作。 E-mail: caq501@163. com。 收稿日期: 2007—08—23

微生物研究所。

1.1.2 培养基 母种培养基: 综合 PDA 培养基: 马铃薯 (去皮)200 g, 葡萄糖 20 g KH2PO4 3 g, MgSO4 1 g, V B1 20 mg, 琼脂 20 g, 水 1 000 mL; pH 自然。原种培养基: 麦粒 98%,石膏粉 1%,轻质碳酸钙 1%。栽培种培养基: 栽培种培养基配方的设计: 将麸皮、花生饼、玉米粉 3 种辅料作为 3 个因素 (主料桑枝屑的影响忽略不计),同时划定 5%和 10% 2 个比例水平,按 L_8 (2^7)设计 3 因素 2 水平正交试验。

表	1	8 种栽培种培养基的配方			%
配方	桑枝屑	麸皮	花生饼	玉米粉	轻质碳酸钙
1	83	5	5	5	2
2	78	5	5	10	2
3	78	5	10	5	2
4	73	5	10	10	2
5	78	10	5	5	2
6	73	10	5	10	2
7	73	10	10	5	2
8	68	10	10	10	2

注: 料水比均为1:1.1。

1.2 方法

1.2.1 母种的制备 按常规方法制作母种培养基 0.11 MPa、121 $^{\circ}$ 灭菌 30 min。将活化后的菌种在无菌条件下,挑取一小块移接至斜面试管上,25 $^{\circ}$ 左右条件下培养, $10\,\mathrm{d}$ 左右菌丝长满,备用。

1.2.2 原种的制备 先将麦粒煮熟, 再将其它成分加入和匀, 待冷却, 用750 mL 菌种瓶进行装料, 0.14 MPa, 126℃, 灭菌 2 h。将长满的母种在无菌条件下转接入原种瓶中, 在生化培养箱中25℃左右培养25 d左右满瓶。1.2.3 栽培种的制备 按配方要求先将3%麸皮、2%的轻质碳酸钙与各自的桑枝屑, 加入发酵菌种一起发酵

刊程顶城酸刊与各自时聚权盾,加入友酵困种一起友酵 $4 \sim 6 \, \mathrm{d}$,每天翻堆 $1 \, \mathrm{x}$ 。余下的各种成分等料发酵好后 再加入并拌匀。采用 $17 \, \mathrm{cm} \times 35 \, \mathrm{cm}$ 的高压聚丙烯袋装料,每袋料长 $15 \, \mathrm{cm}$,料重 $300 \, \mathrm{g}$ $0.14 \, \mathrm{MPa}$ 、 $126 \, \mathrm{C}$ 灭菌

5.61

2 h。用空气杀菌消毒净化机、紫外灯对移入接种室的料 袋灭菌 30 min。 30 min 后即可接种, 在菌种培养室内 20~25 ℃、相对湿度 60%~70%条件下培养。

2 结果与分析

2.1 不同配方的栽培种培养基中生长情况的测定 表 2 不同配方的培养基对白杨树菇菌丝生长的影响

项目	萌发时间	满袋时间	日平均生长	密度	长势
配方	/ d	/ d	速度/ mm ° d-1	山皮	
配方 1	2	60	2.32	++	中
配方 2	2	55	2.54	++	中
配方 3	2	59	2.37	+	弱
配方 4	2	50	2.77	+++	壮
配方 5	2	51	2.72	+++	壮
配方 6	2	48	2.83	+++	壮
配方 7	2	52	2.71	+++	壮
配方 8	2	49	2.78	+++	壮

注 按菌丝的密度分为 + 、 + + 、 + + + 3 级。

从表 2 可以得知:8 种配方菌种块萌发时间一致,均 为2d。满袋时间配方6最短,配方8次之,配方1最长。 配方 4、配方 5、配方 6、配方 7、配方 8 菌丝密度和长势都 很好,配方1、配方2较好,配方3较差。 菌丝生长速度 快慢依次为配方 6、配方 8、配方 4、配方 5、配方 7、配方 2、配方3、配方1;而配方1中含碳桑枝屑的比例最高,3 种含氮辅料比例最低。在其上的菌丝满袋时间最长、生 长速度最慢,表明氮源量不足;配方8中含碳桑枝屑的 比例最低,而3种含氮辅料比例最高,满袋时间、生长速 度均位居第二,表明氮源起着重要的作用。

2.2 不同配方的栽培种培养基中生长情况

试验是一个3因素2水平试验,3个因素:麸皮(A)、 花生饼(B)、玉米粉(C); 2个水平:5%(1)、10%(2)。

白杨树菇菌丝牛长速度的方差分析 表 3

变差来源	平方和	自由度	均方	F
A 因素	0.1352	1	0. 1352	22. 35
B因素	0.00605	1	0.00605	1
C 因素	0. 08	1	0.08	13. 22
AB 交互作用	0. 01445	1	0.01445	2.39
AC 交互作用	0.0242	1	0.0242	4.00
BC交互作用	0.00245	1	0.00245	0.40
误差	0.00605	1	0.00605	
总和	0.2684	7		

注。年 0.05。

从表 3 可以看出, A 因素(麸皮)和 C 因素(玉米粉) 为主要影响因素, AB 交互作用和 AC 交互作用为次要 影响因素, B 因素(花生饼)和 BC 交互作用均方很小, 可 以看作误差的估计值。为了检验更可靠,将它们合并到 误差项中,重新列出方差分析表(表4)[5]。

表 4 合并误差后的方差分析表

变差来源	平方和	自由度	均方	F
A 因素	0. 1352	1	0. 1352	27. 88
C因素	0.08	1	0.08	16. 49
AB 交互作用	0.01445	1	0.01445	3.00
AC 交互作用	0.0242	1	0.0242	4.99
误差	0.01455	3	0.00485	
总和	0. 2684	7		

注: a= 0.01。

比较 A₁和 A₂, 得 A₂高于 A₁, A₂为最优水平, 再比 较 C₁和 C₂, C₂大干 C₁, C₂为最优水平。为了选出 AC 交 互作用的最优水平,需列出两向表。将 A 因素(麸皮)和 C 因素(玉米粉)各水平组合的结果填在下表 5 中。

AC 交互作用 表 5 C_1 C_2 4, 69 5.31 A_1

其中 A_2C_2 最好, AC 交互作用所取水平与主效应 A 因素(麸皮)和 (因素(玉米粉)所取水平一致。同理下 一步选出 AB 交互作用的最优水平, 列出两向表 6。

5.43

表 6 AB 交互作用 B_1

4, 86 5.14 A_2 5. 55 5.49

由此可得出 A2 Bi 最好, AB 交互作用所取水平与主 效应 A 因素所取水平一致。经过对白杨树菇菌丝生长 速度结果的分析得出 A2B1C2的组合为最优水平, 即为配 方 6 所表示的水平, 这与此次试验结果一致。

3 结论

经过 3 因素 2 水平 $L^{8}(2^{7})$ 正交试验分析了麸皮、花 生饼、玉米粉以及它们之间的交互作用对白杨树菇菌丝 生长速度的影响,得知麸皮和玉米粉对白杨树菇菌丝生 长速度的影响较大,花生饼对白杨树菇菌丝生长速度的 影响较小,进一步筛选出最适合白杨树菇菌丝生长的栽 培种培养基配方,即试验的配方 6. 桑枝屑 73%, 麸皮 10%, 花生饼 5%, 玉米粉 10%, 轻质碳酸钙 2%。

参考文献

- 蒋德俊 常键, 陈燕. 白色杨树菇栽培技术[J]. 农村实用科技 2004 12(2): 17.
- 林杰. 白色茶薪菇栽培技术 』. 福建农业 2006(4): 16-17.
- 蒋德俊、常键、陈燕.珍稀食用菌白色杨树菇栽培技术 』. 当代蔬菜 2004, 10(2); 20-21.
- 任德珠, 罗国庆, 吴剑安, 等. 桑枝高产栽培灵芝技术[]]. 广东蚕业 2002, 36(2); 39-43.
- 杜荣骞. 生物统计学[M]. 北京. 高等教育出版社, 2003.4.