七个苦瓜自交系主要经济性状配合力和遗传参数分析

余中伟,向长萍

(国家蔬菜改良中心华中分中心,教育部园艺植物生物学重点实验室,华中农业大学园艺林学学院,湖北武汉430070)

摘 要: 选用 7 付苦瓜自交系 按双列杂交法配制 21 付杂交组合, 分析了 9 付主要经济性状的 配合力和遗传力。结果表明: 各性状的 一般配合力和特殊配合力效应均达到极显著水平。亲本 P3 综合性状最优,可以在育种中直接利用:组合 P3×P7 综合性状最优。除瓜长和始收期外,其 它性状主要以非加性效应为主。

关键词: 苦瓜: 经济性状: 配合力: 遗传参数 中图分类号: S 642.503.2 文献标识码: A 文章编号: 1001-0009(2008)11-0021-04

苦瓜(Momordica charantia L.)是葫芦科苦瓜属 1 a 生蔓性草本植物, 因其营养丰富[1] 有很高的医疗保健功 能2-4, 故随着居民生活水平的提高和保健意识的增强 而受到广大消费者的青睐。由于苦瓜的遗传育种研究 起步较晚,落后于葫芦科其它主要瓜类蔬菜,因此为了 满足生产上的需要,选育高产优质的苦瓜新品种就显得 尤为重要,尤其是适合设施栽培的优良苦瓜品种,目前 尚处于空白。研究选用7个耐低温性较强的优良苦瓜 自交系为亲本采用双列杂交法对主要农艺性状的配合 力和遗传力进行分析,为有效选择亲本、挖掘优异种质 资源、性状遗传改良及筛选优良组合提供理论依据。

1 材料与方法

1.1 试验材料

7个苦瓜亲本材料均由华中农业大学苦瓜耐低温材 料筛选与应用课题组经多年多代选育的抗逆性较强形 态差异较大的自交系作亲本, 分别是 132-3-1(P1)、70-1 (P2)、Z-1-4(P3)、1-2-6(P4)、69-3-7(P5)、1-6-3-1(P6)和 88-3-7(P7)。按 Griffing 双列杂交方法 2^[5] 共配制 21 个 杂交组合。

1.2 田间试验设计

表 1

各性状的方差分析及配合力方差分析(F值)

变异来源	自由度	产量	结瓜数	重加单	从长	始收期	第一雌花花期	第一雌花节位	Ve
区组	2	5. 11	1.45	1. 88	32.99	1. 37	2.11	0. 45	0. 68
处理	27	78. 47 **	43. 38 * *	24. 33 **	15.87 **	31. 53 **	37. 86 **	71.28 **	982.1 **
GCA	6	169. 59 **	109. 8 * *	51. 27 **	54.31 **	88. 19 **	76. 86 **	160. 72 * *	2 392.45 **
SCA	21	52. 43 **	24. 41 * *	16. 63 **	4. 88 * *	15. 34 **	26. 72 **	45.72 **	597. 14 * *

注、*差异显著、**差异极显著。

第一作者简介: 余中伟(1981-), 男, 在读硕士, 研究方向为蔬菜遗 传育种。E-mail: zhongwei212@webmail.hzau.edu.cn。

通讯作者: 向长萍。

基金项目: 教育 部重点资助 项目(104134)。

收稿日期: 2008-06-07

2006年 5~6 月配制组合, 21 个杂交组合及 7 个亲 本于 2007 年 3 月 3 日浸种催芽, 4 月 7 日定植于华中农 大蔬菜分中心实验基地。随机区组设计,3次重复,小区 面积 4 m², 每小区 8 株, 四周设保护行。栽培管理同苦 瓜大田生产。

1.3 数据记录

田间调查及室内测定性状:产量(kg/小区)、结瓜数 (条/小区)、单瓜重(g)、瓜长(cm)、始收期(d 指从浸种到 小区 1/3 植株开始采收所需天数)、第一雌花开花期(d)、 第一雌花节位(节)、Vc 含量(mg/100g)。数据采集标准 参考李锡香等 9 编著的 (黄瓜种质资源描述规范和数据 标准》。

1.4 数据统计分析

配合力及遗传参数分析参考唐启义[7] DPS(v3.01) 数据处理系统进行处理。

2 结果与分析

2.1 配合力方差分析

方差分析表明(表 1),9 个性状在组合间的差异达到 极显著水平, 进而对各性状进行配合力分析。同时, 9个 性状一般配合力和特殊配合力效应也达到极显著水平。

2.2 亲本性状的一般配合力效应分析

一般配合力效应在同一亲本不同性状间存在明显 的差异(表2),表明同一亲本在不同性状上加性效应大 小不同, 表现出正向、负向效应。如 P3 亲本在产量、结 瓜数、单瓜重上均表现出较高的 GCA 正效应,在瓜长和

第一雌花节位上表现出较高的负效应, 说明该亲本适合配制增加产量的早熟组合; P2 亲本在结瓜数、始收期、第一雌花花期和第一雌花节位表现出较高的正效应, 在瓜重、瓜长和 V c 含量上表现出较高的负效应, 说明该亲本适宜配制能增加结瓜数的中熟组合; P6 亲本在第一雌花

花期、第一雌花节位和 Vc 上表现出较高正向效应; P7 亲本在始收期、第一雌花花期及第一雌花节位上表现出较高的负效应, 说明此亲本能提高早熟性。P4 亲本在瓜长和始收期上表现出较高的正效应, 在产量上则表现出较高的负效应。

表 2

各性状的一般配合力(GCA)效应分析

亲本代号	产量/ kg。区-1	结瓜数	单瓜重/ g	ЛK/cm	始收期	第一雌花期	第一雌花节位	Ve/mg ° (100g)-1
P1	-2.02 * *	- 5 . 22 **	-10 . 95	0.79	-0.69	- 0 . 55	- 0. 54	10. 21 **
P2	-0.3	5.93 **	— 27. 05 **	— 2 . 97 *	2. 80 **	1. 04 *	1. 73 **	— 15 . 2 * *
Р3	4. 59 **	9.26 **	30.8 * *	 2. 7 *	-0.93	- 0 . 75	— 1. 05 * *	5. 98 **
P4	— 1 . 06 *	-3	-4. 37	4.9 **	1. 77 **	0.2	0.27	— 3 . 77 * *
P5	-0.92	4 . 4 *	6.41	-0.99	-1.52 *	0.62	- 0.38	- 0. 92 * *
P6	0.13 *	0. 15	2.83	0.06	0.39	1. 45 * *	1. 58 **	10.68 **
P7	-0.41	- 2.74	2.32	0.86	— 1 . 81 **	—2. 03 **	— 1 . 59 * *	— 7 . 03 * *
LSD0.05	1.04	3.35	15.6	2. 27	1.07	0.85	0.62	1. 24
LSD0.01	1.39	4.46	20. 84	2.99	1.56	1. 12	0.82	1.65

注 亲本代号: P1=1323-1; P2=70-1; P3=Z-1-4; P4=1-2-6; P5=69-3-7; P6=1-6-3-1; P7=88-3-7。

2.3 各组合特殊配合力效应分析

从表 3 可以看出组合 $P2 \times P3$ 在单瓜重表现出较高的正效应; 组合 $P3 \times P7$ 在产量、结瓜数、单瓜重表现出较大的正效应。在雌花节位表现出较大的负效应; 组合 $P4 \times P6$ 在第一雌花花期、第一雌花节位上表现出较大的正效应; 组合 $P1 \times P6$ 在 Ve 含量上表现出较大的正效

应; 组合 $P2 \times P7$ 在 Ve 含量上表现出较大的负效应; 组合 $P1 \times P3$ 在单瓜重、产量及 Ve 含量上表现出明显的负效应; 组合 $P6 \times P7$ 在第一雌花节位、第一雌花花期表现出较高的正效应, 但在始收期上则表现出较高的负效应。

表 3

各性状的特殊配合力(SCA)分析

组合	产量/ kg ° 区─1	结瓜数	单瓜重∕ g	瓜长/cm	始收期	第一雌花期	第一雌花节位	V _C /mg ° (100g)-1
P1× P2	1.61 *	— 1 . 17	30.47 **	3. 59 **	−0. 85	-2. 4 **	- 0.53	3. 38 **
$P1 \times P3$	— 3. 63 **	−2. 17	-44 **	-2.22	-0. 81	-0.28	1.41 **	— 22 . 47 **
P1× P4	2.7 **	7.76 * *	13. 35	-1.04	−1. 32	1.77 **	-0 . 96 *	— 12 . 59 **
Pl× P5	1.45 *	4.5 *	5. 34	1.56	-0.89	-0.76	0.91 *	1. 51 *
P1× P6	2.63 **	7. 28 * *	12. 82	0.65	1.77 *	-0.81	— 1. 38 **	24. 68 **
Pl× P7	0.49	1.83	5. 55	0.2	−0. 13	1.67 **	2. 57 **	-0.49
P2× P3	2.94 **	-2.98	55.38 **	-0.05	-1.48 *	0.79	1.2 **	— 5. 6 **
P2× P4	0.56	5. 61 * *	— 13.9	1.46	— 3 . 18 * *	—1 . 16 *	- 1.35 **	-9.97 **
P2× P5	0.51	2.35	- 5. 78	1.41	−0. 76	- 2. 02 **	-0.02	- 7.06 **
P2× P6	1 . 49 *	-5 . 54 **	 4. 86	0.49	-1.73 *	- 3.96 **	1 . 99 **	8. 26 **
P2× P7	— 0. 38	-0.98	— 1. 13	1.48	−0. 59	0.3	- 0 . 37	— 24 . 82 **
P3× P4	3.97 **	5. 61 * *	38.04 **	0.78	−1. 28	-0.15	1. 32 **	17. 66 **
P3× P5	2.34 **	7. 35 * *	4. 15	0.12	1. 14	0.88	0. 98 **	— 11 . 63 **
P3× P6	1.84 **	4.8 *	6. 62	0.65	- 2 . 29 * *	—1. 06 *	- 0.99 **	-4.75 **
P3× P7	7.49 **	16. 02 **	39.24 **	4. 23 **	−0. 93	— 2 . 47 **	— 2. 59 **	14. 15 **
P4× P5	— 1 . 7 * *	4 . 06 *	-11 . 8	- 0.98	0.34	-0.63	2. 88 **	7. 65 **
P4× P6	0.59	0.06	11.79	0.41	2.7 * *	2.88 **	3. 02 **	1. 66 *
P4× P7	— 0 . 77	-2.06	2.3	-0.06	-2.7 **	- 3 . 42 **	-3.8 * *	- 6.41 **
P5× P6	0.38	−3. 2	29.34 **	3. 07 *	-0.84	1.68 **	— 1. 43 **	-7.09 **
P5× P7	2.42 **	3.69	31.68 **	0.5	-0.04	1.83 **	- 0 . 37	23. 94 **
P6× P7	2.53 **	8.8 **	6. 21	1.84	- 2.04 * *	2.23 **	4 **	4. 94 **
LSD0.05	1.23	3.97	18. 52	2.68	1.39	1.01	0.74	1.47
LSD0.01	1. 64	5. 28	24. 66	3.54	1.85	1.33	0. 97	1.95

2.4 苦瓜主要经济性状遗传参数估计 遗传参数结果表明,除瓜长和始收期外,各性状的 特殊配合力方差均大于一般配合力方差(表 4),说明调查的这些性状非加性效应起主要作用。结瓜数、始收期

和 Vc 含量的特殊配合力方差虽大于一般配合力方差, 但其值较接近, 因此除注重非加性效应作用外, 加性效 应作用也不容忽视。

各性状的广义遗传力除瓜长外均大干50%(表4),

表 4

各性状的群体遗传参数估计

遗传参数	产量/ kg。区-1	结瓜数	单瓜重/ g	∏L∜ cm	始收期	雌花花期	雌花节位	Ve/ mg ° (100g)-1
加性方差	6.3	47. 72	422	13.01	4. 98	1. 87	2.3	138. 46
显性方差	12.44	58. 86	857	4.61	4.41	4. 32	4.02	198. 66
总基因型方差	18. 74	106.58	1279	17.62	9.39	6. 19	6.32	337. 12
环境方差	0. 72	7.54	164. 48	10.66	0.92	1. 51	0.81	1.03
表型方差	16. 32	90. 27	1232. 5	21.77	7.82	6. 76	5.98	268.92
广义遗传力/ %	76. 25	65. 21	69.53	21.14	56. 39	63. 83	67. 25	73.87
狭义遗传力/ %	38. 59	52. 87	34.24	59.77	63.64	27.66	38. 43	51.4
GCA 方差/ %	33. 62	44.77	32.99	73.83	53.04	30. 21	36.39	41.07
SCA 方差/ %	66.38	55. 23	67.01	26.17	46.96	69.79	63.61	58.93

讨论

在杂交育种中通过对 GCA 和 SCA 效应分析选择 最佳亲本组合实现选育优良杂交一代是很重要的环节, 因为它能提供关于目标性状基因作用类型的有用信息。 为资源最优利用提供重要的指导意义。通过对 7 个苦 瓜自交系配合力分析,可以看出就综合性状而言,自交 系 Z-1-4 的表现最优, 该自交系为强雌性系, 可在育种 中直接利用; 自交系 1-6-3-1 和 132-3-1 Vc 含量较高; 自 交系 88-3-7 在早熟性上表现较优。性状的特殊配合力 效应值看出,组合 Z-1-4×88-3-7 在产量上表现较高的 SCA 正效应: 70-1×Z-1-4 在单瓜重表现较高的 SCA 效 应: 组合 132-3-1× 1-6-3-1 在 Vc 含量上有较高的 SCA 效应。研究表明,双亲中至少要有一个亲本性状优势突 出,这样获得强优势的杂交一代可能性才大。

遗传参数分析表明,在研究的9个性状中,只有瓜 长和始收期的加性效应大于非加性效应的作用,其它则 以非加性效应起主要作用。由于结瓜数、Vc含量及始 收期一般配合力方差和特殊配合力 方差值较接近, 所以 加性效应在结瓜数、Vc含量及非加性效应在始收期上 的作用不容忽视。高山[8] 等的研究表明单瓜重和总产 量主要是加性基因起主导作用,该研究的结果与其不太 一致。原因可能由于所用试验材料不同所致。Neele 等⁹ 在研究马铃薯认为,过高估计 SCA 可能由于所选亲 本的亲缘关系较近,不同等位基因数目所限,因此,非加 性效应如上位性就显得相对重要。 Melchinger、Gumber 101 研究表明 SCA 在群内组合显得更重要, GCA 在群 间显得更重要。由于杂种优势形成机理十分复杂,而且 其形成过程也受诸多因素影响, 导致不同材料, 甚至同 一材料在不同环境中基因作用类型也不完全相同。在 单果质量及第一雌花节位广义遗传力胡开林、付群梅[1] 的报道分别是 67.02%和 70.39%; 刘政国、肖喜祝[12] 报 道的结果分别是 42.61%和 90.99%; 该研究的单瓜重、 瓜长、第一雌花节位广义遗传力结果依次为69.53%和 67.25%。因而认为造成遗传力结果估计不一致的可能 原因有试验方法、材料、调查性状所用单位、小区大小、 小区植株种植密度等因素都影响遗传力的估计, 故对遗 传力的估计应慎重。

说明在这些性状遗传因素起主要作用;分析结果还表明

结瓜数、瓜长、始收期及 Vc 含量狭义遗传力都大于 50%,证明这些性状亲代与子代相像关系比较紧密。

参考文献

- 向长萍 吴昌银,汪李平.苦瓜营养成分分析及利用评价 』.华中农 业大学学报 2000, 19(4):388-390.
- [2] Sylvia L H, Huang P L, Chen H C, et al. Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon[J]. Gene 1995, 161: 151-156.
- Subratty A H, Gurib-Fakim A, Mahomoodally F. Bitter melon: an [3 exotic vegetation with medicinal value § J]. Nutrition and Food Science 2005
- Michael B, Krawinkel M D, Gudrun B K. Bitter gourd (Momordia charantia): A diretary approach to hyperglycemia [J]. Natrition Reviews, 2006
- 马育华. 植物育种的数量遗传学基础[M]. 南京: 江苏科学技术出版 社,1982:293-322.
- 李锡香, 朱德蔚. 黄瓜种植资源描述规范和数据标准[M]. 北京. 中国 农业出版社 2005.
- 唐启义. 实用统计分析及其 DPS 数据处理系统[M]. 北京. 科学出版 社,2002;203-218.
- [8] 高山,林碧英,曾小玲,等. 苦瓜产量及相关性状的配合力和遗传参 数分析[]]. 上海农业学报, 2005, 21(4): 38-41.
- [9] Neele A E F, Nab H J, Louwes K M. Identification of superior parents in a patato breeding programme [J]. Theor. Appe. Genet, 1991, 82: 264-
- [10] Melchinger A E, Gumber R K. Overview of heterosis and heterotic groups in agronomic crops//[C]. Lamkey K R, Staub(eds)J S. Concepts and breeding of heterosis in crop plants. CSSA Publication, Madison, 1998, 25: 29-
- [11] 胡开林 付群梅. 苦瓜主要经济性状的遗传效应分析[1]. 园艺学报 2001, 28(4): 238-241.
- [12] 刘政国 肖喜祝. 苦瓜主要经济性状配合力和遗传相关的研究[1]. 广 西农业生物科学, 2004, 23(1):15-19.

NaCl 盐胁迫对番茄种子萌发的影响

杨霄乾,靳亚忠,何淑平(黑龙江)一农垦大学植物科技学院、黑龙江大庆 [633]9)

摘 要:对NaCl 盐胁迫下番茄种子萌发特性进行了研究和品种间比较,研究了不同浓度盐处理下种子发芽势、发芽率、萌发时间和萌发整齐度、简化活力指数、耐盐指数及幼苗生长的情况。结果表明:盐胁迫下,2 倡种番茄发芽势、发芽率、简化活力指数和耐盐指数均呈下降趋势; 胚根/胚芽比在低盐浓度时呈现下降趋势,但随浓度增加而呈上升趋势。说明低盐浓度可刺激种子萌发,但在较高盐浓度胁迫下种子活力下降,下降程度的差异说明耐盐性不同; 随盐浓度增加,种子的萌发时间延长,萌发整齐度下降,品种不同萌发时间和萌发整齐度不同。

关键词. 番茄: 耐盐性: 种子萌发

中图分类号: S 641.204⁺.1 文献标识码: A 文章编号: 1001-0009(2008)11-0024-03

土壤盐渍化对农业的威胁是一个全球性问题。全世界盐渍土约 10 亿 hm²,约占陆地总面积的 10%,我国约有盐渍土 2 700 万 hm²[]。由于栽培设施的封闭性特点或肥水管理不当,常导致设施土壤盐类积聚,土壤盐渍化已成为国内外设施栽培中普遍存在的问题[²],严重影响栽培设施的利用效率 影响设施蔬菜栽培的可持续发展。对于设施土壤盐渍化的问题研究越来越受到重视。揭示番茄萌发期的耐盐生理特性 对于在盐碱地上种植番茄,力争全苗,壮苗,提高产量,争取高效益,以及对番茄的耐盐育种都有重要意义。试验对不同品种的番茄在盐胁迫下萌发特性的变化进行了比较研究,总结

第一作者简介: 杨霄乾(1986), 男, 本科, 现在北京井田种苗有限公司从事番茄栽培工作。 E-mail: 2216822@qq. com。

通讯作者: 新亚忠。Emai: jyz751203@163.com。

收稿日期: 2008-06-11

了盐胁迫下番茄萌发的特点。旨在为耐盐性番茄品种的 鉴定、筛选、提高耐盐性以及设施条件下栽培番茄提供 一定的参考依据。

1 材料与方法

1.1 供试材料

供试番茄品种为: 红粉无限番茄和卡斯米番茄 2 种不同类型的品种 由北京井田种子种苗有限公司提供。种子试验在恒温培养箱内进行, 实验室分析在植物科技学院的园林园艺实验室进行。试验于 2006 年 12 月至 2007 年 4 月底在黑龙江八一农垦大学的园林园艺实验室进行。

1.2 试验设计

设 NaCl 浓度为 0.100.200.400 mmol/L, 处理番茄种子, 每个处理 3 次重复,每个重复 100 粒种子。种子直接放在铺有单层滤纸的发芽盒中,每个发芽盒中注入 10 mL的 NaCl 的溶液,种子上部再铺一层滤纸。放在恒温培养箱中 (28 ± 1) [©]条件下进行培养,发芽期间,以称

Combining Ability and Gengtic Parameter for Major Economic Characters in 7 Bitter Melon Inbred Lines

YU Zhong-wei, XIANG Chang-ping

(National Center for Vegetable Improvement (Central China); Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, Hubei 430070, China)

Abstract: Seven inbred lines for a diallel cross were determined the combining ability and heritability. Seven parents and twenty-one F1 hybrids were evaluated for nine economic characters. Results indicated both general combining ability (GCA) and specific combining ability (SCA) were highly significant. Parental line Z-1-4 exhabited the best comprehensive characters which can be directly used in bitter melon breeding program. Z-1-4×88-3-7 had the best performance among the crosses. The type of gene action were mainly non-additive except for fruit length and day to harvest for the traits studied.

Key words: Bitter melon; Economic characters; Combining ability; Genetic parameter