套袋对果实贮藏生理影响的研究

魏树伟12,王少敏2,翟 衡1

(1. 山东农业大学 园艺科学与工程学院 山东 泰安 271018; 2. 山东省果树研究所 山东 泰安 271000)

摘 要:介绍了国内外套袋苹果和梨采后贮藏生理方面的研究现状,并就套袋果实贮藏方面存在的问题进行了论述。指出了套袋是果品生产中广泛采用的一项技术。果实生长期套袋改变了果实周围的微域环境,从而对果实生长发育、贮藏性亦产生重要影响。套袋果实在贮藏过程中发生了显著的变化,包括呼吸速率、乙烯释放量、糖酸、硬度、质膜透性等生理生化指标,比较一系列的变化可以分析套袋果实贮藏性的优劣。

关键词: 苹果: 梨: 套袋: 贮藏

中图分类号: S 605⁺.9 文献标识码: A 文章编号: 1001-0009 (2007)10-0066-03

果实套袋是生产高档无公害水果的重要途径之一。 20世纪初,日本果农为了防止桃小食心虫对果实的危害,在梨、葡萄上进行了套袋,后又在苹果上应用¹¹。苹果和梨采收以后直接进入消费市场的仅占小部分,有很大一部分被贮藏。从生产实践来看,套袋除可预防病虫害外,还可使果实表面光洁无锈,着色好,而且售价高。果实生长期套袋改变了果实周围的微域环境²⁻⁵¹,形成了遮光、保湿、保温的微环境。可显著提高果实的外观品质。同时可以防止农药、尘埃及病虫对果实的直接污染和侵害。因此套袋对果实的外观品质的影响是显而易见的,果实生长发育环境的改变对其贮藏性产生影响的研究较零散,所以研究套袋果实采后及贮藏期间的生理特性,对指导套袋生产及果实贮藏具有重要意义。

1 套袋果实采后生理变化研究

园艺产品采后贮藏过程中,产生了复杂的生理和生化变化,其中最重要的是果实的衰老。 尽管对衰老的机理还需要进一步深入研究,但是目前已经清楚衰老是植物激素、生理代谢与环境高度协调的结果。

1.1 套袋果实贮藏期间的失水(失重)

果实水分含量是反映果实品质的重要指标之一,大量失水将会导致果实皱缩 直接影响果实外观品质和口感 因此失水(失重)率是反映果实贮藏品质的重要指标。目前对于套袋果实和未套袋果实失水失重情况存在几种不同的观点。观点之一⁶ 认为套袋果实和不套袋果实贮藏过程中水分含量均上升,贮藏过程中套袋果

第一作者简介: 魏树伟(1981-), 山东 农业大学 在读硕士, 从事果树栽培生理方面的研究。 E-mail: weisw 2007 @163. com。

通讯作者: 王少敏, 研究员, 主要从事苹果、梨高档果品及品种资源研究。 Email; wsm@sdip, cn。

收稿日期: 2007-06-26

水分含量较不套袋果实高, 其贮藏条件为 5 [℃]恒温冷库。 两者在贮藏过程中水分含量均呈上升趋势且上升幅度 基本相同。持此观点的人认为贮藏过程中水分含量升 高可能是恒温库内湿度较大, 果实失水较少, 果实本身 不断呼吸消耗掉大量营养物质所致。另一种观点认 为^[7] 套袋和未套袋果实贮藏过程中均表现出失水失重 套袋果实失水失重较未套袋果实缓慢, 研究者是以鸭梨 为试材得出的此结论。鸭梨等品种果实具有开放型果 点, 因而失水较快, 这些品种间失水快慢的差异与其果 锈、果点覆盖呈显著正相关, 套袋果实果锈、果点覆盖降 低这可能是套袋果实水分蒸发慢的主要原因。还有观 点认为^[8] 凡套袋果果皮的腊粉层薄, 贮藏期易萎蔫。

1.2 套袋果实贮藏期间乙烯释放量及呼吸速率变化

植物激素乙烯在跃变型果实成熟衰老过程中具有重要的作用。内源乙烯产量的突然升高,往往被认为是果实色泽⁹、质地¹⁹、风味和香味物质¹¹⁻¹³等生理指标开始发生不可逆变化的标志。因而乙烯成为该类果实成熟的启动和调节的关键因子¹⁴。 梨和苹果果实均属于呼吸跃变型果实。 林河通等发现采收后的套袋黄花梨在(20±1)°C条件贮藏 15 d 出现明显的呼吸高峰¹¹³,而乙烯释放在 11 d 左右出现明显的跃变峰。孙希生¹⁹等研究发现在常温(20±1)°C 下果实呼吸除红富士的呼吸高峰不特别明显外,其它 3 个品种果实(津轻、金冠、乔纳金)的呼吸均属于典型的呼吸跃变型,采后呼吸强度由弱逐渐增强, 20 d 左右达到高峰后,逐渐下降并趋于稳定。低温贮藏可抑制呼吸作用,减少乙烯释放,从而达到保鲜的目的。

1.3 套袋果实贮藏期间硬度的变化

苹果和梨在贮藏过程中硬度的总趋势是逐渐降低的。果实软化是果实成熟衰老过程中构成细胞壁的果胶质和纤维素、半纤维素在细胞壁修整酶的作用下不断

降解的结果[17,18]。果实的许多重要品质如硬度、松实、 脆韧、腻粗以及染病性等都与果实的软化有关。王少敏 等 研究了红富士苹果的硬度发现, 套袋红富士苹果果 实比不套袋红富士苹果果实硬度稍低 不套袋果较套袋 果在贮藏过程中硬度下降趋势平缓。林河通等等研究 了套袋黄花梨的软化机理发现。黄花梨果肉软化前期主 要是淀粉酶作用引起淀粉降解所致,并为呼吸跃变准备 能原: 之后的果肉软化是 PG、纤维素酶作用引起果胶物 质、纤维素等细胞壁组分降解所致: 呼吸跃变过后, 果实 进入衰老阶段 果肉加速软化,出汁率显著增加。Ben Arie 等[19,20] 研究和观察了细胞壁降解酶与超微结构也 证实了 PG 和纤维素酶在梨成熟软化中起着关键作用。

1.4 套袋果实贮藏期间糖酸及维生素 C 的变化

王少敏等研究了短枝红富士表明[6], 套袋果与不套 袋果可溶性固形物、可溶性总糖的含量在贮藏过程中均 有所下降, 套袋果实可溶性固形物含量下降幅度较大, 而不套袋果可溶性固形物与可溶性糖含量变化较为平 缓。不套袋果实的可滴定酸含量下降幅度较大,贮藏1 个月后酸含量下降至较低水平, 之后下降速度减缓, 呈 阶段性上升趋势。贮藏 4 个月后套袋果酸分解速度明 显较不套袋果慢,套袋果贮藏后期可滴定酸含量明显较 不套袋果高。套袋果的固酸比要比不套袋果高, 而固酸 比是影响果实风味的重要因素,因此套袋果实在贮藏后 期具有更好的口感。林河通等研究发现[18],在贮藏期间 梨果实营养成分如可溶性糖、可溶性固形物、可滴定酸、 固酸比等都发生变化。可溶性糖和可溶性固形物含量 在贮藏前期上升,而后下降。固酸比在贮藏期间随着贮 藏时间的延长而上升,这是由于贮藏过程中,糖、酸虽同 被呼吸消耗, 而酸却首先作为呼吸基质被消耗, 从而导 致固酸比值上升。维生素 C 在贮藏期间逐渐下降,这与 维生素 C 的氧化降解有关[11]。

套袋果实耐贮性研究

套袋果实与不套袋果实究竟哪个更耐贮藏, 尚存在 不同的意见。Noro S 21 研究发现, 套袋能延缓苹果贮藏 期间果实的软化,增加果实的耐贮性。 刘彦珍[25] 等研究 表明,低温贮藏条件下,套袋和未套袋红富士苹果生理 生化变化不明显, 室温下贮藏 4~5 个月, 与未套袋果相 比套袋果硬度变化不大,但呼吸速率较快,PPO活性较 大, 套袋果的耐贮性低于未套袋果。

研究发现[24,26] 套袋后皮孔覆盖值降低,角质层分布 均匀一致,而角质层是气体交换的主要通道。角质层过 厚则果实气体交换不良,二氧化碳、乙醇、乙醛等有害气 体大量积累而使果实加速衰老; 过薄则果实代谢旺盛, 抗病性下降。另一方面,套袋减少了病虫侵染,因此贮 藏期间病害大大减少,提高了果实的贮藏性能。 苹果贮 藏 120 d, 套袋果烂果率为 0.8 %, 不套袋果为 14.2 %, 提 高了 13.4%。叶根法等 23 以黄花梨为试材进行了采后 贮藏试验,结果发现不论梨果套袋与否都不宜在常温下 贮藏,贮藏28d基本无好果,但在贮藏第13天检查,套 袋梨好果率为86.3%,比不套袋高28.1%。 经低温贮藏 试验证明, 套袋梨好果率也明显高于不套袋, 贮藏 30 d 套袋的好果率为 98.9%, 比不套袋高出 11.8%; 贮藏至 126 d 时, 套袋梨好果率仍有 95.1%, 比不套袋高出 14.2%

套袋苹果特别是套纸袋的苹果,由干长期处在一个 黑暗潮湿的微环境中,蒸腾能力大为减弱,吸收钙的能 力很差。调查发现[25],烈日下套袋苹果袋内温度比袋外 高 7~10 ℃ 高温密闭的环境大大降低了果实的蒸腾拉 力,减少了进入幼果的钙素数量,这样就容易因缺钙引 起一些生理性病害,如苦痘病、痘斑病和水心病等。但 也有人认为苹果果实缺钙富镁并不直接导致苦痘病发 生, 而是通过其它病理生理过程表现出来, 钙与果实细 胞膜稳定性有关。研究表明, 苦痘病果实抗氧化酶活性 明显低于正常果实,因而细胞抗氧化能力较弱,膜脂质 过氧化产物 MAD 含量高, 膜相对透性特别是果肉外部 细胞膜的相对透性明显高于正常果。人为渗钙可以提 高抗氧化物酶活性 而用 MgCl2 处理则降低了抗坏血酸 过氧化物酶(APX)等酶的活性,因而苹果果实中钙可以 调节细胞抗氧化酶活性,防止膜脂质过氧化,维护细胞 膜正常功能。防止胞间层的解体。

问题与展望

综上所述,生长期特殊的微环境对套袋果实产生了 显著的影响,而这些变化必然会在贮藏过程中表现出 来,从而对果实的贮藏性产生影响。果实的贮藏性是一 个受多种因素影响的过程,探讨套袋果实的贮藏性应该 从多个方面分析,比如果实的呼吸速率变化和乙烯的释 放规律, 贮藏过程中果实的失水速率, 内含物和硬度下 降的趋势, 贮藏期间果实病虫害的发生情况等。前人已 经做了一些这方面的研究,但缺乏系统性且不够全面, 尚有许多问题值得探讨。套袋对富士苹果外观品质的 影响是显而易见的,套袋对果实贮藏生理的影响及其机 理,套袋对果实贮藏期间病虫害的影响等问题均需要进 一步深入研究。

参考文献

- 王少敏 高华君.苹果、梨、葡萄套袋技术[M]. 北京:中国农业出版 [1]
- 李秀菊 束怀瑞.红富士苹果套袋果实色泽与激素含量的变化[]].园 艺学报, 1998, 25(3): 209-213.
- 卜万锁 牛自勉,赵红钰. 套袋处理对苹果芳香物质含量及果实品质 的影响[J]. 中国农业科学, 1998, 31(6): 88-90.
- Hatch M D. The sugar accumulation cycle in cane I. studies on enzymes of the cycle J. Plant Physil 1963, 38: 338-343.
- Hatch M D. The suger accumulation cycle in cane II. Relationship of

泥炭作为园艺基质的研究进展

杜林峰,孙向阳,沈彦

(北京林业大学 水土保持学院,北京 100083)

摘 要: 在现代园艺业生产中, 泥炭作为栽培基质已广泛应用于集约化的花卉苗木生产, 虽然我国拥有丰富的泥炭资源, 但所使用的优质泥炭材料大多还需要进口。 通过对泥炭的概述、国外泥炭在园艺业的发展、以及国内的发展现状, 总结了我国泥炭在园艺业的发展方向和潜力。

关键词: 泥炭: 园艺基质: 研究进展

中图分类号: S 604⁺.7 文献标识码: A 文章编号: 1001-0009 (20007) 10-0068-03

泥炭是植物有机体在过度潮湿、空气难以进入的条件下,经过上千年的腐殖化后,由植物残体组成的一种有机矿产资源。泥炭一般发生在北半球地区的沼泽地

第一作者简介: 杜林峰(1983-), 女, 山西 曲沃人, 北京林业大学在读硕士, 研究方向: 泥炭基质的园艺应用。

通讯作者: 孙向阳(1965-), 男, 北京林业大学教授, 土壤与植物营养学科学术带头人, 研究方向: 土壤生态, 林木营养与施肥。 E-mail; sunxy@bifu. edu. cn。

基金项目: 国家 林业 局 948 资助 项目 (2006-4-46)。

收稿日期: 2007-05-31

带,它以其所具有的较高的有机质、腐殖酸含量,纤维丰富,疏松多孔,通气透水性好等特点,成为植物无土栽培的良好介质。目前,在世界范围内农、林、花卉业生产所需的栽培基质中,以泥炭为原料的基质产品始终占主导地位,但我国泥炭基质的品质与国外产品相比,在物理化学性质、产品形式等方面仍有差距。通过综合各方资料,探讨了我国现阶段泥炭基质的研究进展状况,为后续的泥炭基质研究提供参考。

- 1 我国泥炭资源概况
- 1.1 分布

invertase activity to sugar content and growth rate in storage tissue of plants growth controlled environment J . Plant Physil 1963 39, 228-233.

- [6] 王少敏,高华君,魏立华,等. 短枝红富士苹果生长期果实套袋对采后贮藏品质的影响 JJ. 果树科学, 2000, 17(3): 181-184.
- [7] 林河通, 席屿芳, 陈绍军. 黄花梨果实采后软化生理基础[J]. 中国农业科学 2003 36(3): 349-352.
- [8] 刘志坚.苹果套袋中的几个问题与解决办法[J].北方果树 2001(2): 28-29.
- [9] Jiang Y M, Joyce D G Macnish A J. Extension of the shelf life of banana fruit by 1-methylcydopropene in combination with polyethylene bags
 [J] . Phostharvest Biol Technol, 1999. 16: 187-193.
- [10] Hlwasa K, Klnugase Y, Amano S, et al. Ethylene is required for both the initiation and progression of softening in pear (*Pyrus communis* L.) fruit [J]. Journal of experimental botany, 2003, 54(383): 771-779.
- [11] Fan X, Mattheis J P. Impact of 1-methylcyclopropene and methyjas-monate on apple volatile production [J. J. Agric. Food Chem, 1999 b, 47, 2847-2853.
- [12] Golding J B Sheaer D. Wyllie S G. Application of 1-MCP and propylene to identify ethylene-dependent ripening processes in mature banana fruit.

 [J]. Postharvest Biol and Technol, 1998, 14, 87-98.
- [13] Flores F, Yahyaoui F E, Billerbeck G, et al. Role of ethylene in the biosynthetic pathway of aliphatic ester aroma volatiles in charentais cantaloupe melons J. Journal of Experimental Botany, 2002 53(367); 201-206.
- [14] Lelieverjm, Latchea Bouzyenm. Ethylene and fruit ripening[J] .physiol plant 1997, 101; 727-739.

- [15] 林河通 洪启征, 袁振林, 等. 黄花梨果实冷藏适温的研究[J]. 农业工程学报, 1997, 13(1); 206-210.
- [16] 孙希生 王文辉, 王志华, 等. 1-MCP 对苹果采后生理的影响[J]. 果树科学, 2003, 20(1): 12-17.
- Fisher R L, Bennet A B. Role of cell wall hydrolases in fruit ripening
 A mu. Rev. Plant Physiol. and plant Molec. Bio 1991, 282; 821-823.
- [18] Rose jko Bennetab. Cooperative disassembly of the cellulose xyloglucan network of plant cell walls; parallels between cell expension and fruit ripening [J]. Trens in Plant Science 1999 4, 176-183.
- [19] Ben A R Sonego L changes in pectic substances in ripening pears[J]. Journal of the American Society for Horticultural Science, 1979, 104(4): 500-505.
- [20] Ben A R Kiskev N. Ultra structural changes in the cell walls of ripening apple and pear fruit J. Plant physiology, 1979, 64; 197-202.
- [21] Noro S, Hanafusa M, Saito S. Effect of double paper bagging on incidence of stain and volatile on Hokutoápples during cold storage [J]. Journal of the Japanese society for Horticultural Science 1998, 67(5): 699-707.
- [22] 刘彦珍. 套袋红富士苹果贮藏期间生理生化变化[C]// 园艺学进展第六辑. 西安: 陕西科技出版社 2004; 330-333.
- [23] 叶根法 宋文君,孙伟琴,等. 黄花梨果实套袋与冷藏的保鲜效果试验[]. 浙江农业科学, 2001(1): 14-15.
- [24] 纪凤荣 杨俊荣、王金香、等. 苹果轮纹病的防治试验 J. 落叶果树 1998(2). 52
- [25] 汪良驹 姜卫兵、何岐峰、等. 苹果苦痘病的发生与钙、镁离子及抗氧化酶活性的关系 J. 园艺学报 2001, 28(3), 200-205.