茄果类蔬菜育苗基质优化施肥技术研究

赵明,李祥云,高峻岭,于秋华

(青岛市农业科学研究所, 266100)

摘 要: 运用正交试验设计, 在以草炭、蛭石、珍珠岩为原料的育苗基质中, 加入不同浓度的氮、磷、钾肥料, 进行了番茄、茄子和甜椒等茄果类蔬菜穴盘育苗试验。结果表明, 不同施肥品种与施肥量 对茄果类蔬菜幼苗生长的影响 具有显著差异, 特别是增施 磷肥可使 幼苗株高和干物重增加, 相关性达到显著或极显著水平, 是培育优质壮苗的重要营养元素; 同时, 要注意氮、磷、钾肥料配合施用, 以提高壮苗水平。供试育苗基质的最佳 $N.P_2O_5.K_2O$ 施肥量分别为番茄 $0.2~kg/m^2.0.4~kg/m^2.0.2~kg/m^2$, $0.2~kg/m^2$, $0.4~kg/m^2$

关键词: 育苗基质; 优化施肥; 茄果类蔬菜; 壮苗指数

中图分类号: S641, S604+.306+.1 文献标识码: B 文章编号: 1001-0009(2002)02-0042-03

育苗是蔬菜栽培的重要环节之一, 秧苗质量的优劣直接关系到蔬菜的生长发育、产量和质量, 尤其是蔬菜穴盘育苗技术的推广应用, 对蔬菜育苗技术向现代化、规模化、产业化方向发展起到了很大的推广作用。 穴盘育苗具有生产效率高、秧苗质量好、移栽缓苗快和操作简便等特点, 在茄果类蔬菜生产中应用较为普遍。 在育苗过程中, 幼苗的壮苗指数是评价幼苗生育质量的综合指标, 与茄果类蔬菜早期产量的相关性显著。 为此, 我们应用正交试验设计方法对穴盘育苗基质中施用氮、磷、钾肥料与番茄、茄子、甜椒等蔬菜幼苗的生长及壮苗指数的关系进行了研究, 以期为茄果类蔬菜穴盘育苗基质的肥料施用提供依据。

1 试验材料与方法

1.1 试验材料

穴盘采用常用的 72 孔 $(6\times 12$ 穴孔) 长方形标准塑料育苗盘。育苗基质为草炭、蛭石、珍珠岩,其混合比例为 6:3:1。混合基质的理化性状是: 容重 $0.17~g/cm^3$ 、比重 $1.66~g/cm^3$ 、总孔隙度 90.0%、毛管孔隙度 64.2%、通气孔隙度 25.8%、pH5.54、电导率 1.05~ms/cm、碱解 N699.6 mg/kg、有效 $P_2O_5131.0~mg/kg$ 、速效 $K_2O171.9~mg/kg$ 、水溶性 MgO 311.1~mg/kg、水溶性 CaO 336.0~mg/kg、有效 $T_2O_5131.0~mg/kg$ 、水溶性 MgO $T_2O_5131.0~mg/kg$ 、水溶性 $T_2O_5131.0~mg/kg$ 、有效 $T_2O_5131.0~mg/kg$ 、对溶性 $T_2O_5131.0~mg/kg$ 、有效 $T_2O_5131.0~mg/kg$ 、有效 $T_2O_5131.0~mg/kg$ 、有效 $T_2O_5131.0~mg/kg$ 、有效 $T_2O_5131.0~mg/kg$ 、有效 $T_2O_5131.0~mg/kg$ 、有效 $T_2O_5131.0~mg/kg$ $T_2O_5131.$

1.2 试验方法

试验方案应用 $L_9(3^4)$ 四因子三水平正交试验设计[3],育苗基质中氮、磷、钾施肥量分别设立低、中、高三个试验浓度、各试验肥料浓度设计与处理排列如表 1。

第一作者简介: 赵明, 毕业于山东 农业 大学土化系, 农艺师。 现从 事土壤肥 料及 农业生态环境方面的研究工作。

收稿日期: 2001-10-16

表 1	L _o (3 ⁴) 正交试验设计方案(kg/	m^3
121		III /

			-
处理		因子水平与列号	
号 _	施N量	施P ₂ O ₅ 量	施 K ₂ O 量
1	1(0.2)低	1(0.1)低	1(0.1)低
2	1(0.2)低	2(0.2)中	2(0.2)中
3	1(0.2)低	3(0.4)高	3(0.4)高
4	2(0.4)中	1(0.1)低	2(0.2)中
5	2(0.4)中	2(0.2)中	3(0.4)高
6	2(0.4)中	3(0.4)高	1(0.1)低
7	3(0.8)高	1(0.1)低	3(0.4)高
8	3(0.8)高	2(0.2)中	1(0.1)低
9	3(0.8)高	3(0.4)高	2(0.2)中

按照试验设计方案, 分别将各处理所需加入的肥料溶解于水, 喷洒入定量的混合基质中, 充分搅拌均匀, 装入穴盘, 各处理一盘。供试蔬菜种子经 55 °C~60°C热水浸种消毒并催芽后, 精播于穴盘中, 每穴一粒, 摆放于日光温室内培养。由于供试肥料一次性全部施入基质中, 日常只需定量浇灌清水,以保持基质湿润, 其他管理措施相同。各蔬菜日历苗龄分别是: 番茄 36 d 茄子 42 d 甜椒 45 d。成苗时幼苗根系已将基质包裹, 从穴盘中取出时不散坨。

1.3 幼苗的测定与统计

供试蔬菜成苗后,从每个处理的穴盘中随机取出两排共12株幼苗,将根系包裹的基质仔细清洗干净,测量植株茎粗、株高,用排水法测定根系体积,70°烘干测定茎叶和根系干物重,统计壮苗指数。壮苗指数的计算公式为:壮苗指数=(茎粗/株高)×干物重。各处理幼苗生长量平均测得值如表2。正交试验的方差分析采用极差的方差分析方法^[4]。

2 结果与分析

2.1 施肥对番茄幼苗生长及壮苗指数的影响

随着育苗基质中施 N 量的增加, 番茄幼苗的茎粗、根体积和壮苗指数降低。株高和干物重以中等施 N 量最高(表 3), 施 N 量与根体积的相关性达显著负相关($\mathbf{r}=-0.770^*$, $\mathbf{n}=9$, 下同)。随着施 P 量的增加, 幼苗的茎粗、株高、干物重、根体积和壮苗指数均显著提高, 施 P 量与株高和干物重的相关性达到极显著和显著水平($\mathbf{r}=0.836^**$ 和 $\mathbf{r}=0.736^*$)。随着施 K 量的增加, 幼苗株高增加, 其他指标则以中等施 K 量处

理最高。 极差分析表明, N 肥不同施用量对幼苗根体积和壮 苗指数的影响最大: P 肥不同施用量对幼苗茎粗、株高和干物 重的影响最大: K 肥不同施用量对幼苗壮苗指数的影响最大, 而对其他指标的影响均最小。经方差分析,不同施 P 量对幼

苗干物重的影响达极显著水平(F=155.6 **),对株高的影响 达显著水平 $(F=19.8^*)$; 不同施 N、K 量对幼苗干物重的影 响达显著水平($F = 51.2^*$ 和 $F = 20.7^*$)。 从施肥对番茄壮苗 指数的影响看出,最佳施肥组合为低 N、高 P、中 K。

表 2

不同肥料配比幼苗生长量测得值

	番茄			茄子					甜椒			
处理	茎粗 (cm)	株高 (cm)	干 物重 (g)	根体积 (cm³)	茎粗 (cm)	株高 (cm)	干 物重 (g)	根体积 (cm³)	茎粗 (cm)	株高 (cm)	干 物重 (g)	根体积 (cm³)
1	0. 39	12. 92	0.466	1. 20	0. 23	3. 42	0. 234	1.04	0. 25	7. 12	0. 259	1. 29
2	0.40	17.06	0.617	1. 35	0.30	7.42	0.473	1.71	0. 29	10. 21	0.432	1.79
3	0.40	20.82	0.668	1. 35	0.32	7. 12	0.493	1.21	0.33	11. 12	0.473	1.88
4	0.38	14. 96	0.513	1. 12	0.26	4. 38	0.310	1. 25	0. 24	6. 12	0. 232	0.58
5	0.40	18.06	0.630	1.32	0.30	7.42	0.443	1.38	0.32	10. 92	0.516	2. 04
6	0.40	18. 94	0.614	1.40	0.31	7.88	0.476	1. 17	0.32	12. 33	0.555	1. 54
7	0.38	13.44	0.422	0.97	0. 27	5.33	0.337	1. 25	0. 23	5. 83	0.170	0. 62
8	0.38	15. 79	0.470	0.95	0.31	7.00	0. 423	1. 54	0. 27	8.00	0.314	0.71
9	0.42	17. 10	0.593	1. 15	0.32	7.38	0.556	1.42	0.31	10. 92	0.452	1.08

不同施肥量对番茄幼苗生长及壮苗指数的影响

元素	施肥量 (kg/m³)	茎粗 (cm)	株高(cm)	干 物重 (g)	根体积 (cm³)	壮苗 指数
N	低(0.2)	0.40	16. 93	0. 584	1. 30	0. 0138
	中(0.4)	0.39	17. 32	0.586	1. 28	0.0133
	高(0.8)	0.39	15. 44	0.495	1.02	0.0126
	极差	0.01	1.88	0.091	0. 28	0.0012
P_2O_5	低(0.1)	0.38	13.77	0.517	1.10	0.0130
	中(0.2)	0.39	16.97	0.572	1.21	0.0133
	高(0.4)	0.41	18. 95	0.625	1.30	0.0135
	极差	0.03	5. 18	0.108	0.20	0.0005
K_2O	低(0.1)	0.39	15. 88	0.517	1.18	0.0128
	中(0.2)	0.40	16.37	0.574	1.21	0.0140
	高(0.4)	0.39	17. 44	0. 573	1.21	0.0129
	极差	0.01	1.56	0.057	0.03	0.0012

表 4 不同施肥量对茄子幼苗生长及壮苗指数的影响

元素	施肥量 (kg/m³)	茎粗 (cm)	株高(cm)	干 物重 (g)	根体积 (cm³)	壮苗 指数	
N	低(0.2)	0. 28	5. 99	0.400	1. 32	0.0190	
	中(0.4)	0. 29	6. 56	0.410	1. 27	0.0184	
	高(0.8)	0.30	6. 57	0.439	1.40	0.0200	
	极差	0.02	0.58	0.039	0.13	0.0016	
$\mathrm{P_2O_5}$	低(0.1)	0. 25	4. 38	0. 294	1. 18	0.0171	
	中(0.2)	0.30	7. 28	0.446	1. 54	0.0187	
	高(0.4)	0.32	7. 46	0.508	1. 27	0.0217	
	极差	0.07	3.08	0. 214	0.36	0.0046	
K_2O	低(0.1)	0. 28	6. 10	0.378	1. 25	0.0178	
	中(0.2)	0. 29	6. 39	0.446	1.46	0.0207	
	高(0.4)	0.30	6. 62	0.424	1. 28	0.0190	
	极差	0.02	0. 52	0.068	0. 21	0.0029	

2.2 施肥对茄子幼苗生长及壮苗指数的影响

随着施 N 量的增加, 茄子幼苗的茎粗、株高、干物重、根

体积和壮苗指数均随之提高(表 4)。 随着施 P 量的增加, 幼 苗茎粗、株高、干物重和壮苗指数增加,施 P 量与干物重的相 关性达极显著水平 $(r=0.850^{**})$,与株高和壮苗指数的相关 性达显著水平(r=0.744*和 r=0.787*),中等施 P 量的根体 积最大。随着施 K 量的增加, 幼苗 茎粗 和株 高增 加: 中等 施 K 量的干物重、根体积和壮苗指数最大。 极差分析, P 肥不同 施用量对幼苗的影响较大, N、K 肥不同施用量对各项指标的 影响均较小。经方差分析,不同施 P 量对幼苗茎粗和干物重 的影响达到显著和极显著水平 $(F = 22.6^* \text{ n } F = 115.2^{**})$ 。 从施肥对茄子壮苗指数的影响看出,最佳施肥组合为高 N、高 P、中 K, 与试验处理 9 的结果一致。

2.3 施肥对甜椒幼苗生长及壮苗指数的影响

表 5 不同施即量对甜椒幼苗生长及壮苗指数的影响

1	衣 3 个问他能量对胡椒劝田王长及红田拍数的影响							
元素	施肥量 (kg/m³)	茎粗 (cm)	株高(cm)	干 物重 (g)	根体积 (cm³)	壮苗 指数		
N	低(0.2)	0. 29	9. 48	0. 388	1. 65	0.0118		
	中(0.4)	0. 29	9. 79	0. 434	1. 39	0.0128		
	高(0.8)	0. 27	8. 25	0.312	0.80	0.0101		
	极差	0.02	1. 54	0. 122	0. 85	0.0027		
P ₂ O ₅	低(0.1)	0. 24	6. 36	0. 220	0.83	0.0083		
	中(0.2)	0. 29	9. 71	0.421	1.51	0.0126		
	高(0.4)	0.32	11. 46	0. 493	1.50	0.0138		
	极差	0.08	5. 10	0. 273	0.68	0.0055		
K_2O	低(0.1)	0. 28	9. 15	0.376	1. 18	0.0113		
	中(0.2)	0. 28	9. 08	0.372	1. 15	0.0114		
	高(0.4)	0. 29	9. 29	0.386	1.51	0.0120		
	极差	0.01	0. 21	0. 014	0. 36	0.0007		

随着施 N 量的增加, 甜椒幼苗的根体积降低, 施 N 量与 根体积的相关性达显著负相关 $(r=-0.666)^*$,茎粗有减少的 趋势: 中等施 N 量的株高、干物重和壮苗指数最大。 随着施 P

野生蔬菜龙葵

龙荣华1,刘关所2

龙葵(Solanum nigrum Linn.)属茄科(Solanaceae),茄属(Solanum Linn),别名天茄、天天茄、苦葵。龙葵在全国各地都有分布,在温带、热带等地区也有分布,在云南的思茅、西双版纳等地均有种植。

1 营养价值

龙葵的嫩梢、嫩茎以及幼嫩的叶均可食用。但龙葵中含有龙葵素、茄碱等有毒物质,不可生食,食用前必须经开水漂烫浸泡,去掉有毒物质后方可食用。每100g食用部份含有胡萝卜素 0.93 mg、维生素 B20.12 mg、维生素 C137 mg。据《云南中药资源名录》介绍:龙葵入药有清热解毒,利水消肿之效,治小便不利、白带、疮痛肿痛、皮肿湿疹以及感冒发热等均有较好的药效。

2 特征特性

龙葵属一年生草本植物,叶互生,薄,卵形至矩圆形,长 4~8 cm,近全缘或有不规则角状的粗齿;花小、白色;浆果,直径约 5 mm,在未成熟时色青,成熟时变为紫黑色,近扁圆形,直径 $1\sim1.5$ mm。种子千粒重约 0.3 g。

本人于 1997 年开始至 2001 年, 就先后在云南思茅、昆明等地区进行龙葵人工栽培驯化技术研究。试验表明, 龙葵性喜温暖潮湿的地区, 生长的适宜温度范围为 15 $^{\circ}$ $^{\circ}$ $^{\circ}$ 种子发芽温度为 25 $^{\circ}$ $^{\circ}$ $^{\circ}$ 。 生长期间对日照要求不敏感。

量的增加, 幼苗茎粗、株高、干物重和壮苗指数提高, 施 P 量与株高和干物重的相关性达极显著水平 $(r=0.863^{**}$ 和 $r=0.802^{**}$), 与壮苗指数的相关性达显著水平 $(r=0.774^{*})$, 中等施 P 量的根体积最大。随着施 K 量的增加, 幼苗茎粗和壮苗指数增加, 高施 K 量的株高、干重物和根体积最大。 极差分析, N 肥不同施用量对幼苗根体积影响最大,P 肥不同施用量对幼苗茎粗、株高、干物重和壮苗指数的影响最大,K 肥对各项指标的影响效应均较小。 经方差分析, 不同施 P 量对幼苗茎粗和壮苗指数的影响达显著水平 $(F=36.0^{*}$ 和 $F=20.6^{*}$)。 从施肥对甜椒壮苗指数的影响看出,最佳施肥组合为中 N、高 P、高 K。

3 小结

- 3.1 从番茄、茄子和甜椒育苗试验的幼苗外观长势看出,各处理间差异较大,特别是增施 P 肥可使幼苗生长旺盛,株高、干物重和壮苗指数显著增加,说明在供试混合基质中增施 P 肥有促进苗生长的作用,是培育优质壮苗的重要营养元素。适量配施 N、K 肥,有利于协调幼苗生长所需的养分平衡,使幼苗健壮生长。
- 3.2 通过极差分析看出,不同肥料品种对供试茄果类蔬菜的 影响顺序是:

茎粗: 番茄为 P> N= K, 茄子为 N= P= K, 甜椒为 P> N

3 栽培要点

龙葵可以直播或育苗移栽,但由于直播的用种量较大,且苗期管理不便,故一般采用育苗移栽。龙葵在云南昆明的适宜播种期为 2月中下旬至 3 月上旬(轻霜期)。出苗后,为了防止苗徒长,要控制水份。 待苗长至 5~6 片叶时要及时移栽,株行距为 25~30 cm× 35~40 cm。成活后,要及时追肥,待植株长至 20~35 cm 时,用锋利的刀子进行第一次采收,留下地上部分 5~10 cm,这样有利于促进发侧芽(侧枝)以及增加产量。龙葵在营养生长的前期,应进行中耕除草 2~3 次,同时,结合沟施有机肥料(氮、磷、钾的混合肥料,其比例为 N: $P_2O_5:K_2O=10:5:2)$ 。龙葵的采收期是从第一次采收开始至生殖生长的后期(即浆果由青色变为紫色为止)。产量为 1 $100~2~000~kg/667~m^2$ 。种子成熟后,要及时采收,否则,果(浆果)易破裂,种子掉到田间。

4 主要病虫害

龙葵的虫害主要以蚜虫为主,其防治方法与其它作物的蚜虫防治方法相同。病害主要有黑斑病、病毒病、轮纹病等,防治方法与其它茄科作物 一样。

龙葵作为一种野生蔬菜,不但口感较好,很受消费者的喜爱,而且也可以丰富蔬菜种类,出口创汇,增加效益。

参考文献

- [1] 龙荣华, 李学林. 云南野生蔬菜的开发利用[J]. 中国蔬菜, 2000 (5); 33~36.
- [2] 云南植物志[M]. 科学出版社, 1979(2): 568~569.
- [3] 朱立新. 中国野菜开发与利用[M]. 金盾出版社, 1996, 113~114.
- (1. 云南省农业科学院园艺作物研究所, 650205; 2. 云南省农业科学院组织人事部)

 $= K_{:}$

株高: 番茄为 P>N>K, 茄子为 P>N>K, 甜椒为 P>N N>K

干物重: 番茄为 P> N> K, 茄子为 P> K> N, 甜椒为 P> N> K;

根体积: 番茄为 N> P> K, 茄子为 P> K> N, 甜椒为 N> P> K:

壮苗指数: 番茄为 N = K > P, 茄子为 P > K > N, 甜椒为 P > N > K;

3.3 从施肥对茄果类蔬菜壮苗指数的影响看出, 供试混合基质中的最佳施肥量分别为 (kg/m^3) : 番茄 NO. 2、 P_2O_5O . 4、 K_2O_0 . 2, 茄子 NO. 8、 P_2O_5O . 4、 K_2O_0 . 2, 甜椒 NO. 4、 P_2O_5O . 4、 K_2O_0 . 4、 P_2O_5O . 4 × P_2O_5O .

参考文献

- [1] 陈振德. 蔬菜穴盘育苗技术[M]. 青岛出版社, 2000.
- [2] 中国土壤学会农业化学专业委员会编. 土壤农业化学常规分析方法[M]. 北京: 科学出版社, 1983.
- [3] 赵仁镕, 余松烈. 田间试验法[M]. 北京: 农业出版社, 1979, 271~298.
- [4] 西北农学院、华南农业大学主编 农业化学研究法[M]. 北京: 农业出版社, 1987, 159~161.