矮化苹果不同栽植密度方式及整形模式

于 遒 功, 刘 学 才, 宫 明 波, 位 绍 文, 郑 学 勤

(青岛市农业科学研究所, 山东 青岛 266100)

摘要: 对矮化苹果栽植密度的研究, 得出早期产量与密度呈正相关关系, 使苹果 矮密栽培标准化, 提出了高密园是提高果园早期产量的关键, 以及高密园适时间伐可保持稳产优质的效果。新乔纳金、红富士配 M26 中间砧, 2 年结果, 3 年丰产, 667m²产量最高达 808 3kg。 在整形方面采用纺锤形, 并提出了纺锤形 树体结构的参数指标。证明纺缍形丰产、优质简便。

关键词:矮化苹果:栽培密度:整形模式

中图分类号: S626. 504⁺.7 文献标识码: B 文章编号: 1001-0009(2000)01-0031-02

从 70 年代我国开始研究矮化苹果栽培以来, 矮密栽培已基本走上了规范化的轨道, 现今已完全替代了乔化栽培。本试验旨在努力寻找矮化苹果更为可行、合理的栽培密度、栽培方式和整形模式, 使矮化苹果生产既能早期丰产, 又能在相当时期内稳产、优质的参数指标, 为大面积推广矮化苹果栽培技术, 提供可靠有力的数据和实践经验。

1 试验园基本情况

本试验设于青岛市农科所内, 平地果园, 砂质壤土。土壤有机质含量: 表土层 1. 14%; $20 \sim 40 \,\mathrm{cm}$ 深为 0.78%。土壤中有效 N、P、K 含量分别为 72.5% $667 \,\mathrm{m}^2$ 、 $55.9/667 \,\mathrm{m}^2$ 和 $84.9/667 \,\mathrm{m}^2$ 。 pH 值 6.9. 肥水管理水平: 一般成龄园每年 $667 \,\mathrm{m}^2$ 施基肥 $4000 \sim 5000 \,\mathrm{kg}$ 追肥二次, 每次每 $667 \,\mathrm{m}^2$ 30 $\sim 40 \,\mathrm{kg}$ (尿素和复合肥约各半),每年漫灌浇水 $3 \sim 4$ 次, 其他管理同大田果园。 试材与方法根据不同研究内容具体而定,在研究内容中单独分别介绍。

2 不同栽植密度与方式研究

2.1 矮砧苹果高度密植研究

试材采用金冠/MM106/海棠(50%),短枝型红星/MM106/海棠(50%)。 2 年生苗、于 1987 年定植、667 m^2 分别栽 252 株(3 ~ 1.5× 1.2 m)、465 株(2× 0.7 m)和 968 株(2~0.8× 0.5 m)三种密度,随机栽植。 2.1.1 不同密度与产量关系 从定植第二年结果后,通过连续 11 年的产量调查、试验结果表明,尽管栽植密度较大,但仍表现出密度与总产量之间呈正相关趋势,尤以 667 m^2 栽 968 株区产量最高。 11 年 平均

 $667m^2$ 平均产达 2457. $9k_{\mathfrak{G}}$ 465 株区为 2180. $7k_{\mathfrak{G}}$ 分别比 252 株区增产 46. 2%和 29. 7% (表 1)。从产量调查

表 1 密度对产量的影响

密度		历年产量(kg/667m2)						
株/667m ²	2~4	5~6	7~8	9~10	11~12	Σ	$\Sigma \overline{\mathbf{x}}$	%
968	4737.8	6571.5	5840.8	5396.8	4489.7	27036.6	2457. 9	146. 2
465	3285.5	5992.5	5924.8	4699. 5	3085.4	23987.7	2180.7	129. 7
252	2183.4	4244	4313.3	3816.5	3939.0	18496. 2	1681.5	100

中可以看出, 栽植密度越大, 前期产量越高, 如 968 株区, 3 年生 667m^2 产即达 1631.0kg, 4 年生达 3046.3kg 亦即 $3\sim4$ 年进入盛果期阶段, $1\sim5$ 年累计 667m^2 产达 7040.8kg。分别比 667m^2 栽 465 株区和 252 株区增产 33.3%和 76.5%。 由此可见, 栽植密度 增大是提高前期产量的重要因素之一。

2 1. 2 不同栽植密度对果品质量的影响 试验结果表明,密植果园到一定年限,果园郁闭,如不实行间伐,不但产量下降,而且果品质量也明显降低,即出现密度与果品质量呈负相关趋势。以平均单果重为例,968株区、465 株区和 252 株区分别为 138.8g、140.0g 和155.5g。 其他质量指标均有相应表现(表 2)。从叶面积系数看,在36以上指标时,果品质量即明显下降。

2 2 变化密植栽培研究

2 2 1 高密植区间伐对产量的影响 试验采用先密后稀的变化性密植、对 968 株高密植区、于第 9年生间伐至 484 株,并留有 333.3 m² 未间伐作为对照区。经 4 年来的实验证明,间伐比不间伐平均每 667 m² 增产 26 8 % (表 3)。间伐后,间伐区表现出明显的增产效果,并且产量相对稳定。同时,通过调查得出,间伐后 4 年间平均 667 m² 枝量 8 02 万个,叶面积系数为 3 1,有利于群体内光昭条件的改善和光能利用。

稿件修回日期: 1999-11-07

	开始密度	间伐后密度	667m ² 枝量	叶面积		间	伐后历年产	量(kg/667n	n ²)	
火珪	(株/667m ²)	(株/667m²)	(万个)	系数	9年生	10年生	11年生	12 年生	$\Sigma \overline{\mathbf{X}}$	9/0
变化性密植	968	484	8. 02	3. 1	3734 9	2073. 4	2909	3175. 2	2973. 1	126. 8
对照	968	968	14 6	5. 2	2801 1	2086.8	1904	25 85. 7	2344. 4	100

表 3 密度与果品质量的关系

	处理		9~11 年生平 均果品质 量						
	处理 (株/667m ²)	単果重 (g)	可溶性固形物	硬度 (kg/cm ²)	一级果率 (%)	级外 果 (%)	□叶面 积 系数		
Ī	968	138.8	11.2	6. 1	57. 6	7. 8	5. 2		
	465	140.0	11.3	6. 3	56. 5	7. 4	4.84		
	252	155. 5	11.8	7. 3	68. 0	3. 7	3. 65		

2. 2. 2 高密植区间伐对果品质量的影响 通过对 968 株间伐区和未间伐区 3 年的果品质量调查看出, 高密园适时间伐, 不但可使产量稳定增长, 而且果品质量也有所改善, 无论果实大小, 可溶性固形物含量及一级果率较未间伐区均有明显提高(表 4)。

表 4 间伐对果品质量的影响

处理 (株/667m²)	平均单果重 (g)	硬度 (kg/cm ²)	可溶性固形物	一级果率 (%)	级外果率
间伐(484)	145. 8	6. 6	13. 0	66 5	7. 8
对照(968)	135. 9	6. 5	11. 5	54. 3	10. 9

2.3 新乔纳金和红富士超高密栽植研究

以新乔纳金和红富士 2 年生苗为试材, M $_26$ 为中间砧, 海棠为基砧。 王林为授粉品种。 栽植方式分单行、双行二种形式。 密度为 $_2\times$ 1. $_5$ m ($_667$ m² 栽 $_222$ 株), $_2\times$ 0 $_6$ m ($_667$ m² 栽 $_3555$ 株), 和 $_2\sim$ 0. $_8\times$ 0. $_4$ m ($_667$ m² 栽 $_1190$ 株) 三个处理。 重复三次。 $_1987$ 年春建园. 采用篱式整枝. 铁丝牵引。 其他管理同大田果园。 试验表明: 在超高密条件下, 采用轻剪和拉枝整形等措施, 达到 $_2$ 年结果, $_3$ 年丰产, 密度越大, 早期产量越高。 $_3$ 年生, $_1190$ 株者 $_667$ m² 产达 $_898$. $_3$ kg 的高档果品。 $_667$ m² 栽 $_855$ 株者, $_667$ m² 产达 $_856$. $_2$ kg。 分别比 $_222$ 株者增产 $_7$ 4和 $_3$ 名6,呈极显著性差异。

2.4 新红星不同栽植密度

1987 年建园, 试材新红星/海棠。分 $3\times$ 1m、 $3\times$ 1.5m、 $3\times$ 2.5m 三个处理, 面积各 1.2 (667 m^2), 重复三次。

2.4.1 对产量的影响 从历年产量调查看出, 3×1 m 区产量最高, $4 \sim 8$ 年生累计 $667 \,\mathrm{m}^2$ 产达 $8629.2 \,\mathrm{kg}.3\times 1.5 \,\mathrm{m}$ 为 $6748.0 \,\mathrm{kg}.3\times 2.5 \,\mathrm{m}$ 为 $5039.9 \,\mathrm{kg}$,分别比后两个处理增产 71.2%和 33.9% (表 5)。

表 5 新红星密度对早期产量的影响

行株 距	历年产量 & g/667 m ²)							
(m)	4 年生	5年生	6 年生	7 年生	8 年生	Σ	%	
3×1.0	248	617.8	911.4	3246.4	3605.6	8629. 2	171.2	
3×1.5	185.8	428.2	651.1	2520.4	2962.5	6748.0	133.9	
3×2.5	123.2	179.5	279. 5	1974.0	2483.7	5039.9	100	

2.4.2 对果品质量的影响 据目前就单果重、硬度、可溶性固形物、色泽、以及果品级率方面的调查,没有显著性差异,亦无规律性表现。

3 矮化苹果不同整形模式研究

乔砧首红以 4×2m 栽植,采用纺锤形、篱壁形和二挺身(丫形)三种树形。小区重复三次,随机排列。1988年定植。

3.1 树形对产量的影响

在三种树形中, 经 $3\sim9$ 年调查, 纺锤形产量最高, 累计株产 $120.0 \, \mathrm{kg}$ 、累计 $667 \, \mathrm{m}^2$ 产为 $9976.6 \, \mathrm{kg}$; 篱壁形累计 $667 \, \mathrm{m}^2$ 产 $9578.2 \, \mathrm{kg}$, 分别比二挺身(丫形) 增产 28.7% 和 23.6%(表 6)。

3.2 树形对果品质量的影响

在同样管理条件下,果品质量以纺锤形较好。表7为3年果品质量调查的平均值。纺锤形单果重151.6g,可溶性固形物、硬度、一级果率均高于其他二种树形。

表 6 首红不同树形对产量的影响

	3~9年累	引	另	≹计667m2 テ	-
人生	$\Sigma(kg)$	$\Sigma \overline{\mathbf{x}}$	$\sum (kg)$	$\Sigma \overline{\mathbf{x}}$	%
纺锤形	120. 0	17. 2	9976. 6	1425. 2	128. 7
篱壁形	115. 4	16. 4	9578. 2	1368.4	123. 6
二挺身	93. 4	13. 4	77 52. 2	1107.4	100. 0

表 7 树形与果品质量

品种	树形	平均单 果重(g)	可溶性 固形物(%)	硬度 (kg/ cm ²)	果品 一级	级率 级外
首红	纺锤形	151. 6	11. 8	6 4	54. 8	7. 8
	篱壁形	141. 0	11. 1	5 9	50 5	10. 5
	二挺身	134. 7	11. 3	5 8	43 5	12. 8

3.3 树形对修剪量的影响

从修剪量看,不同树形略有差异,纺锤形修剪量较小, $5\sim9$ 年生平均株修剪量 $2.7k_g$ 篱壁形 $2.9k_g$, 二挺身(Υ 形) $3.2k_g$ 。纺锤形的整形不需刻意人工造形,符合苹果树自然生长情况,整形简便,容易,工作量少。

4 小结

- 4.1 在栽植密度与方式研究中, $1 \sim 12$ 年结果表明 产量与密度呈正相关。并证明, 高密园(968 株/667 m^2)后期($7 \sim 9$ 年生)如不适时间伐。会出现减产和质量下降。间伐后可继续维持高产优质水平。可参照 $667\mathrm{m}^2$ 枝量 $8 \sim 9$ 万个, 叶面积系数 3.0 \sim 3.6 为技术指标。
- 4.2 通过矮砧新乔纳金、红富士新品种的超高密栽植研究、乔砧新红星的不同栽植密度研究、得出苹果早期产量随栽植密度的增加而提高。 果农可根据自身的财力、地立条件决定栽植密度。 矮砧苗山坡地可采用 3×1.5~2m 的行株距、平原地采用 3×2~2.5m 为宜。
- 4.3 乔砧首红在 4×2m 栽植密度下, 纺锤形整枝表现增产, 且整形容易, 很适密植, 现生产上已广泛应用。