GA3 对香椿芽生长的影响

叶可辉 赵秋菊 崔鸿文

摘要 1997年1月至1997年4月,以红香椿为试材,清水作对照,研究不同时期涂不同浓度 GA_3 对香椿芽生长速度、产量的影响。结果表明:除芽萌动期外,在芽初生期、迅速伸长期用 50mg/L、100mg/L、150mg/L的 GA_3 处理,对香椿芽的生长速度及产量都有极显著的促进作用,特别在芽初生期,以 100mg/L 和 $150mg/LGA_3$ 处理效果极佳。

关键词 香椿 GA3 促进生长 增产

香椿芽是一种食用价值和营养价值都很高的木本蔬菜、含有丰富的 Vc 和胡萝卜素、脆嫩多汁、色泽鲜美、具有独特的浓郁香味、鲜食、腌制均甘美可口。 过去多以采食露地自然生长嫩芽为主、近年来开始保护

地栽培, 据研究芹菜、菠菜、茼蒿等绿叶菜用 GA_3 处理均有明显的增产作用并有提前采收的效果, 但对香椿施用 GA_3 效果如何未见有报道。本试验对大棚栽培的香椿用 GA_3 处理, 研究其促进生长效应, 以期为生产提供科学的依据。

- 1 试材与方法
- 1.1 试材 红香椿,山东农家品种,树龄两年。
- 1.2 试验方法 选株高 Im 左右, 顶梢粗 $I \sim 1.5 cm$. 顶芽饱满, 未萌动, 未受伤害的单株, 分别在芽子萌动期即芽子外层角质层裂开, 最外层三片托叶张开, 可以看见内部复叶显黄绿色和片上锔齿状小叶, 初生期一芽长 $2.5 \sim 3.5 cm$, 芽最外层三片复叶分开与主轴成 $10^{\circ} \sim 15^{\circ}$ 角, 叶梢鲜红, 心叶嫩绿; 迅速伸长期一芽长 $4.5 \sim 5.5 cm$, 芽最外层三片复叶分开与主杆成 30° 角, 叶梢红中带绿, 开始展平, 内层第二轮三片复叶开始抽长等三个时期用浓度为 50 cmg/L, 100 cmg/L, 150 cmg/L 的 GA_3 涂抹树杆及顶芽, 以清水为对照, 随机区组设计, 三次重复, 每重复处理 30 株。
- F为主, 近年来开始保护 1.3 观察记录方法 定期测芽子长度, 当最长芽 不同时期施用不同浓度 GA 3 对香椿芽生长的影响表

处	理			产量 *	差异水平		増产率	嫩芽长 *	差异水平		较对照增长	绝对生长	相对生长	
浓度(mg/L)		时期		(g)	0. 05	0. 01	%	(cm)	0. 05	0. 01	$(cm)\pm$	速度(cm/d)	速 度	时间(d)
100	初	生	期	293. 16	a	A	36. 79	15. 03	a	A	+3.65	1.085	0. 14	4. 87
150	初	生	期	261.60	b	В	22.06	13.40	b	В	+2.02	0.934	0. 13	2. 65
150	迅i	速伸长	期	242. 16	\mathbf{c}	C	13. 12	13. 13	\mathbf{c}	C	± 1.89	1.015	0. 12	2. 49
100	迅i	速伸长	期	239. 64	\mathbf{c}	C	11.94	12. 03	d	D	± 0.79	0.884	0. 11	1. 11
50	初	生	期	226. 92	d	D	5.88	11.95	d	DE	± 0.64	0.813	0. 12	0. 89
50	迅i	速伸长	期	224. 04	de	D	4.69	11.74	e	$\mathbf{E}\mathbf{F}$	± 0.50	0.835	0. 11	0. 61
150	萌	芽	期	222.06	de	DE	3.37	11. 53	f	FG	± 0.15	0.734		0. 61
100	萌	芽	期	220. 50	def	DE	2.65	11.47	fg	FG	+0.09	0.721		0. 31
50	萌	芽	期	218.34	ef g	DE	1.60	11.46	fg	FG	+0.08	0.717		0. 23
CK_1	萌	芽	期	214. 80	fg	E		11.38	g	G		0.707		
CK_2	初	生	期	214. 32	g	E		11. 31	g	G		0.752		
CK ₃	迅i	速伸长	期	214. 08	g	E		11. 24	g	G		0.776		

^{*:} 产量为 30 株总产; *: 嫩芽长为 30 株平均芽长;

15cm 左右时全部采收,以 30 株总产量计产。

2 结果与分析

- 2.1 对产量的影响 由表可知, 在萌芽期处理只有 $150 \,\mathrm{mg/L}$ 与 $\mathrm{CK_1}$ 有显著性差异, 在初生期和迅速伸长期各处理相对于 CK 都达到了极显著性差异, 在初生期用 $100 \,\mathrm{mg/LGA_3}$ 处理效果最为显著, 增产 36. 79%, $150 \,\mathrm{mg/LGA_3}$ 处理次之, 增产率为 22.06%。
- 2.2 对芽子生长的影响 除在萌芽期 50mg/L 100mg/L 150mg/L相对于CK 无显著性差异外,在初生期和迅速伸长期相对于CK 都表现出极显著性差异,以初生期 100mg/L 处理效果最佳,相对CK 芽长增长 3.65cm, 其绝对生长速度为 1.085cm/d, 比对照每日多伸长 0.328cm,相对生长速度为 0.14,可提前4.87d 采收,在初生期和迅速伸长期 150mg/L 两个处理也有明显的提前采收效果。

- 3 小结
- 3.1 GA_3 对植物的最明显的作用是促进茎叶的伸长生长 本试验结果表明, 在春大棚香椿芽促成栽培中施用 GA_3 有明显的促进生长、提前采收效果, 并有很强的增产效应, 初生期 $100 \, \mathrm{mg/L}$ 处理效果最为显著,可增产 36.79%, 提前 $4.87 \, \mathrm{d}$ 采收。
- 3.2 本试验从芽子萌动期开始处理、采用涂抹法。在芽子初生期和迅速伸长期、 150mg/LGA_3 对复叶的叶片有个别烧伤现象、但对叶柄伸长无影响、若田间生产使用,用喷雾法可考虑用大于 100 mg/L 的 GA_3 。
- 3.3 GA₃ 促进香椿 芽生长后,据观察有利于降低芽木质化程度,是否有增进品质作用,还有待于进一步研究。
- (陕西省农科院蔬菜花卉研究所 陕西杨陵 712100 北京市农林科学院农业科技信息所 北京 100081 西北农业大学园艺系 陕西杨陵 712100)