大白菜黑斑病苗期抗性鉴定方法研究

张淑霞

崔崇士张跃伟张凤荣

(青岛市农业科学研究所)

(东北农业大学蔬菜园艺系 哈尔滨)

摘要 采用 L_9 (3^4) 有重复正交设计试验得出大白菜苗期抗黑斑病最佳条件为大白菜 2 片真叶期,孢子液浓度为 2400 个狍子/ m 】 环境温度为 $20\sim25$ $^{\circ}$ C: 利用该鉴定方法对黑龙江省部分大白菜资源进行苗期抗病筛选,得出抗病材料 3 份,中抗材料 20 份。

关键词: 大白菜 黑斑病 鉴定方法 抗源筛选

大白菜黑斑病由链格孢属真菌(Alternaria)引起,主要危害大白菜的子叶、真叶及叶柄、造成幼苗枯死和叶片干枯。有时也危害花梗和花荚。侵染种荚、生成的霉状物在收获时污染种子、成为种传病害。自70年代以来在我国云南、贵州、陕西及北京等地迅速蔓延、造成重大损失,成为主要病害之一。近年来又有向北发展的趋势,1994年在黑龙江省大面积发生、减产20%~40%。因此黑斑病已成为需要防治的重要病害之一。

1. 材料与方法

- 1. 1. 供试材料 供试菌株为 Ab-1-3(1995年采自哈尔滨市平房区, 分离纯化后得到), 品种资源鉴定采用 36 份大白菜材料
- 1. 2. 供试方法(鉴定方法试验除外)当第 2 片真叶充分展开时接种黑斑病菌,采用滴接法,滴在真叶上,在 20℃下黑暗下保湿 24 小时,然后正常管理 3 天,从第 4 天起夜间保湿,白天揭开给以光照,第 8 天保湿 24 小时后进行调查。调查方法:
 - 0级: 无病:
 - 1级:接种叶生褐色小点,无褪绿斑;
 - 3 级: 接种叶生 3mm 以下的褪绿斑, 无霉层;
- 5 级:接种叶生 3mm 以上的褪绿斑,有极少霉层、病斑不许成片:

7 级:接种叶生 3mm 以上的褪绿斑,有较多的霉层、病斑连成片:

9级 接种叶病斑连成片,大面积枯死 霉层明显。 大白菜黑斑病抗性鉴定方法筛选 本试验采用 L9 (34)设计,三个因素,每个因素 3 个水平,见表 1。

本试验是在 15° C、 20° C、 25° C三个光照培养箱内进行,每个处理 12 株,3 次重复,试验用品种为 DB3,

接种后管理同上,8 天后调查 记载发病情况 选用 $L_a(3^4)$ 正交表 第 3 列为误差列 实施方案见表 2。

大白菜种质资源对大白菜黑斑病抗性鉴定 按上述筛选得出的鉴定方法对黑龙江省 36 份大白菜品种资源进行抗性鉴定。以 DBI 和 DB2 分别为抗、感对照品种、接种后 8 天调查发病情况、分级标准同上。群体抗病性划分的标准:

病情指数≤11.11 为高抗

- 11. 12≤病情指数≤33. 33 为抗病
- 33.34≤病情指数≤55.55 为中抗
- 55. 56≤病情指数≤77. 77 为感病
- 77.78≤病情指数≤100.00 为高感

表 1 大白菜黑斑病苗期抗性鉴定试验因素与水平

因素	1	2	3
浓度	1200 个孢子/ ml	1800 个孢子/ ml	2400 个孢子/ ml
苗龄	子叶期	2 叶期	4 叶期
温度	15℃	20 ℃	25 ℃

表 2 大白菜黑斑病苗期抗性鉴定实施方案

试验号	1	1 2		4
1	1 (1200)	1 (子叶期)	1	1 (15℃)
2	1 (1200)	2 (2 叶期)	2	2 (20℃)
3	1 (1200)	3 (4 叶期)	3	3 (25℃)
4	2 (1800)	1 (子叶期)	2	3 (25℃)
5	2 (1800)	2 (2 叶期)	3	1 (15℃)
6	2 (1800)	3 (4 叶期)	1	2 (20℃)
7	3 (2400)	1 (子叶期)	3	2 (20℃)
8	3 (2400)	2 (2 叶期)	1	3 (25℃)
9	3 (2400)	3 (4 叶期)	2	1 (15℃)

81994年2017 Northem Horticulture Electronic Publishing House. All rights reserved. http://www.cn

表 3 抗性鉴定方法极差分析

	A (浓度)	B (苗龄)	C (温度)
T1	253. 16	436. 77	305. 32
T2	435. 46	540. 93	426. 42
Т3	511. 31	222. 33	468. 29
极差	257. 15	318. 60	162. 97

2. 结果与分析

2. 1. 大白菜黑斑病抗性鉴定方法: 从极差分析来看, 苗龄的极差最大。孢子液浓度的极差次之, 温度的极差 最小。因此。抗性鉴定方法研究结果受苗龄的影响较孢子液浓度和温度大。相对于其它两个因素, 温度的影响 最小,但其数值为 162 97. 也是一个不可忽略的因素。

从方差分析来看, $A \times B \times C$ 三个因素的 F 值分别为 $56.99 \times 85.05 \times 23.08$ 均大于 F0.01=6.25 达到了极显著水平,说明各水平间存在极显著差异,应该进行各因素的新复极差测验。

表 4 大白菜黑斑病病情指数方差分析

变因	自由度	SS	MS	方差	F0. 05	F0. 01
重复	2	57. 21	28. 605	< 1	3. 68	6. 25
A	2	3908. 88	1954. 44	56. 99 * *		
В	2	5864. 44	2932. 22	85. 05 * *		
C	2	1591. 76	795. 88	23. 08 * *		
误差	18	620. 59	34. 447	< 1		
总变异	26					

表 5 不同组合间新复极差测验

试验号	处理组合	病情指数累加值	$\alpha = 0.05$	α = 0. 01
8	$A_3B_2C_3$	220. 72	a	A
7	$A_3B_1C_2$	218. 17	b	A
4	$A_2B_1C_3$	207. 66	b	A
5	$A_2B_2C_1$	117. 80	\mathbf{c}	В
1	$A_1B_1C_1$	115. 10	c	В
6	$A_2B_3C_2$	110. 10	c	В
2	$A_1B_2C_2$	98. 25	c	BC
9	$A_3B_3C_1$	72. 42	d	$^{\mathrm{CD}}$
3	$A_1B_3C_3$	39. 91	e	D

从表 5 可知,9 个处理组合中以第 8 个处理最好,三次重病情指数累积可达 220. 72,与第 7、4 个组合差异显著,与其余几个组合差异极显著,它代表的各因素的水平为:孢子液浓度 2400 个孢子/ ml,接种期为 2 片真叶期,接种后环境温度为 25 °C,这与单因素分析的结果相一致。

上述分析得出,大白菜黑斑病苗期抗性鉴定的较好条件为:孢子液浓度 2400 个孢子/ m 品度为 2 片真叶期。温度为 20-25 C,这样,才能使鉴定结果可靠、准确。真实地反映出大白菜品种资源的抗感情况。

2. 2. 大白菜品种资源抗性鉴定: 在这 36 份材料中, 抗病材料有 3份, 中抗材料有 20份, 占绝大多数, 感病材

料有 12 份,高感材料有 1 份。抗病材料中有 2 份是多倍体品种。体现了多倍体材料抗逆性强。说明利用染色体加倍可能是抗黑斑病育种的一个有效途径。中抗材料的居多,也是我省黑斑病发病较外省轻的一个原因。所以合理进行品种布局。是减轻该病发生的一个可行方法。感病品种的大多数均抗三大病害(病毒病、霜霉病、软腐病)中的 1 种至 3 种。但对黑斑病却表现为感病,这就要求大白菜在抗病育种中应进行多抗育种。

3. 讨论

3. 1. 本试验采用了正交设计,处理组合虽然由 27 个减少为 9 个,但保证了为试验提供丰富信息,对温度、苗龄、浓度三个因素同时进行考察,在各个因素处于变动的情况下,获得了一套满意的结果,解决了由于农业试验生产季节性强,时间紧,在遇到多因素、多水平的情况下,采用全面试验法较困难的问题。

表 6 36 份大白菜材料对黑斑病的抗病鉴定结果

材料名称	病情指数	抗性等级	材料名称	病情指数	抗性等级
95011	69. 44	S	95185	55. 55	MR
96111	56. 95	S	94140	56. 95	S
95186	77. 77	S	95073	45. 45	MR
961 18	41. 67	MR	96062	35. 71	MR
9311	35. 06	MR	10	45. 00	MR
96048	28. 33	R	95233	41. 82	MR
95190	36. 67	MR	96047	28. 33	R
95125	54. 55	MR	11	53. 57	MR
96090	44. 00	MR	95071	70. 00	S
13	76. 67	S	14	60. 00	S
96188	34. 29	MR	95024	36. 90	MR
12	61. 67	S	16	48. 00	MR
95058	57. 14	S	96092	42. 86	MR
96106	45. 00	MR	95046	38. 86	MR
95166	52. 50	MR	96083	60.00	S
96065	58. 00	S	95054	63. 33	S
15	27. 33	R	96021	93. 33	HS
95988	45. 00	MR	94156	51. 67	MR
3 2 抗源材料的筛选是抗病育种工作的基础					

参考文献

- 1. 梁力哲 1985 十字花科蔬菜种子上几种交链孢霉的检验与识别 蔬菜4, 21
- 2. 李明远 1991 白菜黑斑病的发生与防治 长江蔬菜 5: 20
- 3. 李明远 1990 关于大白菜苗期抗黑斑病鉴定中的几个 技术性问题的商榷 中国蔬菜 4: 23-25

(青岛邮编 266100 哈尔滨 150030)

定稿日期: 1997年11月26日