ZHANG Yanjun,XU Pan,CHEN Hongwei,et al.Effects of Arbuscular mycorrhizal Fungi on the Growth,Absorption and Accumulation of Cadmium in Houttuynia cordata[J].Northern Horticulture,2025,(19):37-44.[doi:10.11937/bfyy.20250651]
丛枝菌根真菌对鱼腥草生长及吸收积累镉的影响
- Title:
- Effects of Arbuscular mycorrhizal Fungi on the Growth,Absorption and Accumulation of Cadmium in Houttuynia cordata
- 文章编号:
- 1001-0009(2025)19-0037-08
- Keywords:
- Houttuynia cordata; Arbuscular mycorrhizal Fungi; absorption and accumulation heavy metals; cadmium
- 分类号:
- S 154.3
- 文献标志码:
- A
- 摘要:
- 以鱼腥草为试材,采用控制变量法设置3个不同的接菌处理,分别为不接种菌根组(non mycorrhiza,NM)、接种摩西斗管囊霉(Funneliformis mosseae,Fm)、接种根内根孢霉(Rhiaophagus intraradices,Ri);在温室盆栽培养条件下,人为设置50 mg·kg-1镉(Cd)污染胁迫,研究了不同接菌处理的鱼腥草在镉胁迫下与丛枝菌根真菌(Arbuscular mycorrhizal Fungi,AMF)的共生效果、生理状态、重金属Cd的吸收积累量以及抗氧化酶活性,以期为AMF-鱼腥草联合修复技术的深入研究和应用提供参考依据。结果表明:2种AMF菌剂在高浓度Cd胁迫下均能与鱼腥草稳定共生;2种AMF菌剂均可显著提高鱼腥草的叶绿素含量和生物量,促生效应Fm>Ri>NM,但Fm和Ri之间无显著差异;2种AMF均在不同程度上提高了鱼腥草叶片、地上茎及须根中的Cd含量,Cd生物富集系数大小排序为Ri>Fm>NM,Ri较Fm显著提高了鱼腥草Cd吸收量。鱼腥草叶片抗氧化酶及丙二醛(MDA)检测结果表明,接种AMF使MDA含量增加不显著,接种AMF后超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性水平显著升高。综上,AMF(Fm & Ri)有利于鱼腥草在Cd胁迫下生长和吸收积累Cd,AMF可通过提高抗氧化酶活性缓解高Cd积累对鱼腥草造成的损伤,Ri的接种效果更优。
- Abstract:
- Taking Houttuynia cordata as experimental material,three distinct mycorrhizal inoculation treatments were established using the control variable method,the non-mycorrhizal group (non mycorrhiza,NM),the Funneliformis mosseae (Fm) inoculation group,and the Rhizophagus intraradices (Ri) inoculation group.Under controlled greenhouse pot culture conditions,a cadmium (Cd) pollution stress of 50 mg·kg-1 was artificially introduced to investigate the symbiotic performance,physiological status,Cd uptake and accumulation,as well as antioxidant enzyme activity of Houttuynia cordata across the different mycorrhizal inoculation groups under Cd stress,in order to provide reference for the in-depth research and application of AMF-Houttuynia cordata combined remediation technology.The results showed that both AMF inoculants formed stable symbiotic associations with Houttuynia cordata under high Cd stress.Both Fm and Ri significantly enhanced the chlorophyll content and biomass of Houttuynia cordata,with the growth-promoting effect ranked as Fm>Ri>NM,although no significant difference was observed between Fm and Ri.Both AMF treatments increased the Cd concentration in the leaves,stems,and fibrous roots of Houttuynia cordata to varying degrees.The Cd bioaccumulation coefficient followed the order Ri>Fm>NM,with Ri showing a significantly higher Cd uptake compared to Fm.Analysis of antioxidant enzymes and malondialdehyde (MDA) levels in Houttuynia cordata leaves revealed that AMF inoculation did not significantly elevate MDA content but significantly enhanced the activity of SOD,POD,and CAT.In conclusion,AMF (Fm and Ri) promotes the growth,Cd uptake,and accumulation in Houttuynia cordata under Cd stress.AMF mitigates the adverse effects of high Cd accumulation by enhancing antioxidant enzyme activity,with Ri demonstrating a superior inoculation effect.
参考文献/References:
[1]TIWARI S,LATA C.Heavy metal stress,signaling,and tolerance due to plant-associated microbes:An overview[J].Frontiers in Plant Science,2018,9:452.[2]ZUO T T,JIN H Y,CHEN A Z,et al.Novel integrated tiered cumulative risk assessment of heavy metals in food homologous traditional Chinese medicine based on a real-life-exposure scenario[J].Frontiers in Pharmacology,2022(13):908986.[3]孟媛,张亮,韩易辰,等.镉砷污染下四种中药材苗生长及重金属迁移研究[J].北方园艺,2025(8):88-95.[4]WANG Q,LI Z,FENG X,et al.Vegetable Houttuynia cordata Thunb.as an important human mercury exposure route in Kaiyang county,Guizhou province,SW China[J].Ecotoxicology and Environmental Safety,2020,197:110575.[5]WU J,TANG Y,MENG X X,et al.Lead absorption and accumulation in Houttuynia cordata Thunberg and hygienic safety evaluation[C].Beijing:Beijing 2009 3rd International Conference on Bioinformatics and Biomedical Engineering,IEEE,2009.[6]SUGIURA Y,OZAWA H,UMEMURA M,et al.Soil amendments effects on radiocesium translocation in forest soils[J].Journal of Environmental Radioactivity,2016,165:286-295.[7]WANG L,LIN H,DONG Y,et al.Effects of cropping patterns of four plants on the phytoremediation of vanadium-containing synthetic wastewater[J].Ecological Engineering,2018,115:27-34.[8]SMITH S E,READ D.Mycorrhizal Symbiosis[M].3rd ed.Amsterdam:Elsevier,2008.[9]WU S,ZHANG X,HUANG L,et al.Arbuscular mycorrhiza and plant chromium tolerance[J].Soil Ecology Letters,2019,1(3):94-104.[10]WU S,ZHANG X,CHEN B,et al.Chromium immobilization by extraradical Mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance[J].Environmental and Experimental Botany,2016,122:10-18.[11]WU Z,MCGROUTHER K,HUANG J,et al.Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration:Field experiment[J].Soil Biology and Biochemistry,2014,68:283-290.[12]MALEKZADEH E,ALIASGHARZAD N,MAJIDI J,et al.Contribution of glomalin to Pb sequestration by arbuscular mycorrhizal fungus in a sand culture system with clover plant[J].European Journal of Soil Biology,2016,74:45-51.[13]WIPF D,KRAJINSKI F,VAN TUINEN D,et al.Trading on the arbuscular mycorrhiza market:from arbuscules to common mycorrhizal networks[J].New Phytologist,2019,223(3):1127-1142.[14]DEBELJAK M,VAN ELTEREN J T,PRUK A,et al.The role of arbuscular mycorrhiza in mercury and mineral nutrient uptake in maize[J].Chemosphere,2018,212:1076-1084.[15]SHARMA S,ANAND G,SINGH N,et al.Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism[J].Frontiers in Plant Science,2017,8:906.[16]JANEESHMA E,PUTHUR J T.Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants[J].Archives of Microbiology,2020,202(1):1-16.[17]姜攀.闽南药用植物丛枝菌根真菌资源及多样性研究[D].泉州:华侨大学,2012.[18]陈存.几种四川乡土速生植物在丛枝菌根真菌的作用下对重金属吸收的变化研究[D].成都:成都师范学院,2020.[19]van GEEL M,de BEENHOUWER M,LIEVENS B,et al.Crop-specific and single-species mycorrhizal inoculation is the best approach to improve crop growth in controlled environments[J].Agronomy for Sustainable Development,2016,36(2):37.[20]LIU L,GONG Z,ZHANG Y,et al.Growth,cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi[J].Ecotoxicology,2014,23(10):1979-1986.[21]杨光.药用植物AM应用基础研究[D].北京:中国中医科学院,2010.[22]CHEN B,NAYUKI K,KUGA Y,et al.Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis[J].Microbes and Environments,2018,33(3):257-263.[23]黄玉丹,张淑彬,李琳,等.丛枝菌根真菌繁殖体的高效扩繁[J].微生物学通报,2023,50(2):503-513.[24]LI M,PEREZ-LIMN S,RAMREZ-FLORES M R,et al.Mycorrhizal status and host genotype interact to shape plant nutrition in field grown maize (Zea mays ssp.mays)[J].Mycorrhiza,2023,33(5/6):345-358.[25]GIAMBALVO D,AMATO G,INGRAFFIA R,et al.Nitrogen fertilization and arbuscular mycorrhizal fungi do not mitigate the adverse effects of soil contamination with polypropylene microfibers on maize growth[J].Environmental Pollution,2023,334:122146.[26]SUN S,FENG Y,HUANG G,et al.Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties[J].Environmental Pollution,2022,314:120309.[27]MCGONIGLE T P,MILLER M H,EVANS D G,et al.A new method which gives an objective measure of colonization of roots by vesicular:arbuscular mycorrhizal fungi[J].New Phytologist,1990,115(3):495-501.[28]ZHAN F,LI B,JIANG M,et al.Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize[J].Environmental Science and Pollution Research International,2018,25(24):24338-24347.[29]YEGANEH E,VATANKHAH E,TOGHRANEGAR Z,et al.Arbuscular mycorrhiza alters metal uptake and the physio-biochemical responses of Glycyrrhiza glabra in a lead contaminated soil[J].Gesunde Pflanzen,2022,75(4):921-937.[30]JIANG Y,DING X,ZHANG D,et al.Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants[J].Environmental and Experimental Botany,2017,133:70-77.[31]毛明明,刘鸿雁,邢丹,等.丛枝菌根真菌对不同辣椒品种幼苗吸收累积镉的影响[J].北方园艺,2021(22):1-7.[32]WU S,ZHANG X,SUN Y,et al.Chromium immobilization by extra-and intraradical fungal structures of arbuscular mycorrhizal symbioses[J].Journal of Hazardous Materials,2016,316:34-42.[33]RIAZ M,KAMRAN M,FANG Y,et al.Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils:A critical review[J].Journal of Hazardous Materials,2021,402:123919.[34]FOYER C H,HANKE G.ROS production and signalling in chloroplasts:cornerstones and evolving concepts[J].The Plant Journal,2022,111(3):642-661.[35]MITTLER R,ZANDALINAS S I,FICHMAN Y,et al.Reactive oxygen species signalling in plant stress responses[J].Nature Reviews.Molecular Cell Biology,2022,23(10):663-679.[36]刘凯洋,邱智军,张巧明,等.丛枝菌根真菌对砷胁迫下棉花根系形态和生理特征的影响[J].西北植物学报,2021,41(7):1188-1198.
相似文献/References:
[1]郝智强,马永清,叶晓馨,等.不同处理方式下鱼腥草浸提液刺激瓜列当种子发芽的研究[J].北方园艺,2013,37(04):168.
[2]钟 军,仇 萍,李爱华,等.高产优质鱼腥草新品种“红玉”的选育[J].北方园艺,2014,38(14):164.
ZHONG Jun,QIU Ping,LI Ai-hua,et al.Breeding of High-yielding and Good Quality Houttuynia cordata Thunb Cultivar ‘Hongyu’[J].Northern Horticulture,2014,38(19):164.
[3]谢银军,吴香梅,张培旗.超高压提取鱼腥草多糖最佳工艺研究[J].北方园艺,2013,37(10):153.
XIE Yin-jun,WU Xiang-mei,ZHANG Pei-qi.Study on Extraction Process Optimum of Polysaccharides from Houttuynia cordata Thunb Using Ultra High Pressure Method[J].Northern Horticulture,2013,37(19):153.
[4]田怀,侯娜,龚明贵.响应面试验优化鱼腥草中多酚提取及抗氧化性[J].北方园艺,2020,44(17):94.[doi:10.11937/bfyy.20193659]
TIAN Huai,HOU Na,GONG Minggui.Optimization of Extraction and Ntioxidation of Polyphenols in Houttuynia cordata Thunb. by Response Surface Methodology[J].Northern Horticulture,2020,44(19):94.[doi:10.11937/bfyy.20193659]
[5]齐帅,黄丹枫,杨再强,等.基于MaxEnt模型预测鱼腥草在中国的潜在适生区[J].北方园艺,2022,(15):148.[doi:10.11937/bfyy.20220346]
QI Shuai,HUANG Danfeng,YANG Zaiqiang,et al.Prediction of Potentially Suitable Distribution Area of Houttuynia cordata Thunb.in China Based on MaxEnt Model[J].Northern Horticulture,2022,(19):148.[doi:10.11937/bfyy.20220346]
[6]齐帅,查凌雁,黄丹枫,等.鱼腥草种植技术创新发展[J].北方园艺,2022,(17):121.[doi:10.11937/bfyy.20220657]
QI Shuai,ZHA Lingyan,HUANG Danfeng,et al.Houttuynia cordata Plantation Technology Innovation and Development[J].Northern Horticulture,2022,(19):121.[doi:10.11937/bfyy.20220657]
备注/Memo
第一作者简介:张雁君(1995-),女,硕士,研究实习员,现主要从事菌根生物学等研究工作。E-mail:2190627807@qq.com.责任作者:高鹏(1982-),女,硕士,研究员,现主要从事环境污染治理等研究工作。E-mail:ppenggao@.163.com.基金项目:四川省省级科研院所基本科研业务资助项目(2024JDKY0003)。收稿日期:2025-02-06