MA Hongyu,ZHU Guosheng,GUI Yang,et al.Effects of Matrix Moisture Content on the Morphology and Physiology of the Phallus rubrovolvatus Mycelium[J].Northern Horticulture,2024,(17):109-118.[doi:10.11937/bfyy.20240517]
基质含水量对红托竹荪菌丝体形态及生理的影响
- Title:
- Effects of Matrix Moisture Content on the Morphology and Physiology of the Phallus rubrovolvatus Mycelium
- 文章编号:
- 1001-0009(2024)17-0109-10
- 分类号:
- S 646
- 文献标志码:
- A
- 摘要:
- 以63个典型红托竹荪菌株为试材,采用40%、50%、60%和70%不同含水量基质处理方法,研究了不同含水量处理对各菌株菌丝体的生长速度、形态特征及生理指标的影响,以期筛选出具有抗旱特点的菌株。结果表明:基质含水量40%和50%为干旱条件,菌丝体萌发率低,且生长缓慢、稀疏细弱;基质含水量60%较适宜菌丝生长,菌丝体萌发率高且萌发时间短,长势旺盛;基质含水量70%为稍涝条件,菌丝体虽萌发早,但生长不均匀,杂菌感染率上升。对筛选得出的2株耐旱品种ZS57和ZS59进行生理生化检测,菌株ZS57在干旱胁迫时更多更迅速的积累可溶性糖(SS),其次是可溶性蛋白质(SP)及脯氨酸(Pro)来应对干旱导致的膜损伤和渗透压失衡;菌株ZS59则更迅速的积累SP应对干旱。在抗氧化系统方面,2个菌株均是主要增加超氧化物歧化酶(SOD)活性,其次是过氧化物酶(POD)、过氧化氢酶(CAT)和还原型谷胱甘肽(GSH)活性,以减少活性氧对细胞的损伤。
- Abstract:
- Taking 63 typical Phallus rubrovolvatus strains as the test materials,the water content of substrate was set as 40%,50%,60% and 70%,the effects of different water content treatments on the growth rate,morphological characteristics and physiological indexes of mycelium were studied,in order to screen out strains with drought resistance.The results showed that the water content of substrate was 40% and 50%,and the germination rate of mycelium was low,and the growth was slow,sparse and weak.When the water content of the substrate was 60%,it was suitable for mycelium growth,with high germination rate,short time and vigorous growth.70% of the water content of the substrate was slightly waterlogged.Although the mycelium germinated early,its growth was uneven and the infection rate of miscellaneous bacteria increased.Physiological and biochemical tests were carried out on two drought-tolerant varieties ZS57 and ZS59.The results showed that ZS57 accumulated more soluble sugar (SS) and then soluble protein (SP) and proline (Pro) to cope with membrane damage and osmotic pressure imbalance caused by drought.Strain ZS59 accumulated SP more quickly to cope with drought.In terms of antioxidant system,both strains mainly increased the activity of superoxide dismutase (SOD),followed by peroxidase (POD),catalase (CAT) and reduced glutathione (GSH) to reduce the damage of reactive oxygen species to cells.
参考文献/References:
[1]王艺琴.脆木耳对干旱胁迫的生理响应及转录组分析[D].贵阳:贵州大学,2022.[2]王国红.黑木耳子实体响应空气湿度的转录组分析[D].牡丹江:牡丹江师范学院,2022.[3]孙燕,李浪,刘妮,等.红托竹荪品种选育试验研究[J].中国食用菌,2020,39(1):12-15.[4]王学奎,黄见良.植物生理生化实验原理与技术[M].3版.北京:高等教育出版社,2015.[5]宋倩云.冬青对盐胁迫的生理响应及耐盐筛选[D].南京:南京林业大学,2020.[6]RANIA S B,NABIL Z,WALID R B,et al.Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littorali[J].Plant Molecular Biology,2010,72(1/2):171-190.[7]杨虎臣.干旱胁迫对幼苗期甜菜脯氨酸(Pro)代谢通路的影响[D].哈尔滨:哈尔滨工业大学,2016.[8]薛世伟.干旱胁迫对三种栀子生理特性的影响[D].长沙:中南林业科技大学,2022.[9]杨小英,王利凯,马小梅,等.干旱胁迫对八仙花生理特性及叶片结构的影响[J].北方园艺,2023(11):75-80.[10]余玲,王彦荣,GARNETT T,等.紫花苜蓿不同品种对干旱胁迫的生理响应[J].草业学报,2006,15(3):75-85.[11]MITTLER R,VANDERAUWERA S,SUZUKI N,et al.ROS signaling:The new wave?[J].Trends in Plant Science,2011,16(6):300-309.[12]CAVERZAN A,CASASSOLA A,BRAMMER S P.Antioxidant responses of wheat plants under stress[J].Genetics and Molecular Biology,2016,39(1):1-6.[13]CHAKHCHAR A,LAMAOUI M,AISSAM S,et al.Differential physiological and antioxidative responses to drought stress and recovery among four contrasting Argania spinosa ecotypes[J].Journal of Plant Interactions,2016,11(1):30-40.[14]李爽.干旱和高温对大豆苗期抗氧化特性的影响[D].哈尔滨:东北农业大学,2018.[15]WANG C Q,XU H J,LIU T.Effect of selenium on ascorbate-glutathione metabolism during PEG-induced water deficit in Trifolium repens L.[J].Journal of Plant Growth Regulation,2011,30(4):436-444.[16]田浩原.姬菇培养料配方优化与胞外酶活性研究[D].贵阳:贵州大学,2022.[17]ZOU J,HU W,LI Y X,et al.Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.)[J].Journal of Integrative Agriculture,2020,19(2):495-508.[18]吴团结,赵蒙,张绪璋,等.大米培养基含水量对北虫草菌丝及子实体的影响[J].现代农业科技,2014(21):107-108.[19]方华舟,左雪枝,肖习明,等.含水量及空气温度对蛹虫草菌丝及子实体生长的影响[J].贵州农业科学,2011,39(9):110-113.[20]张介驰,孔祥辉,王玉文.培养料含水量对黑木耳菌丝生长及出耳影响[J].食用菌,2015,37(4):24-26.[21]陈雅琦,苏楷淇,李春杰.盐胁迫对2种冷季型草坪草幼苗生长和生理特性的影响[J].草原与草坪,2021,41(3):32-40.[22]徐梦馨,郭宏波,廉冬,等.干旱胁迫对猪苓菌丝生长及多糖合成相关酶活性的影响[J].西北农业学报,2019,28(7):1179-1186.[23]FU J,HUANG B.Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress[J].Environmental and Experimental Botany,2001,45(2):105-114.[24]XU L,HAN L,HUANG B.Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J].Journal of the American Society for Horticultural Science,2011,136(4):247-255.
相似文献/References:
[1]王贵平,王金政,薛晓敏,等.叶面喷施甜菜碱对干旱胁迫下苹果幼树[J].北方园艺,2014,38(12):10.
WANG Gui-ping,WANG Jin-zheng,XUE Xiao-min,et al.Effect of Spraying Glycinebetaine on Physiological Responses of Apple Young Trees Under Drought Stress[J].Northern Horticulture,2014,38(17):10.
[2]方 晶.高压电场对干旱胁迫下黄瓜种子萌发的影响[J].北方园艺,2014,38(13):41.
FANG Jing.Effect of High Voltage Electric Field on Germination of Cucumber Seeds Under Drought Stress[J].Northern Horticulture,2014,38(17):41.
[3]张 爽,赵 纯,董 然,等.槭叶草对PEG-6000模拟干旱胁迫的生理响应[J].北方园艺,2013,37(22):74.
ZHANG Shuang,ZHAO Chun,DONG Ran,et al.Physiological Responses of Mukdenia rossii Under PEG-6000 Drought Stress[J].Northern Horticulture,2013,37(17):74.
[4]梁蕊芳,康利平,徐 龙,等.干旱胁迫对樱桃番茄幼苗叶片生长特性的影响[J].北方园艺,2013,37(23):12.
LIANG Rui-fang,KANG Li-ping,XU Long,et al.Effect of Drought Stress on Growth Characteristics of Leaves in Lycopersicom esculentum var. cerasiforme Seedlings[J].Northern Horticulture,2013,37(17):12.
[5]王少平,黄超.切花菊‘黄中黄’对干旱胁迫的生理响应[J].北方园艺,2013,37(15):64.
WANG Shao-ping,HUANG Chao.Physiological Response of Cut Chrysanthemum ‘Huangzhonghuang’ to Drought Stress[J].Northern Horticulture,2013,37(17):64.
[6]董延龙,常缨.干旱胁迫对五种观赏蕨类植物叶绿素荧光特性的影响[J].北方园艺,2013,37(15):66.
DONG Yan-long,CHANG Ying.Effects of Drought Stress on Chlorophyll Fluorescence Characteristics of Five Species of Ornamental Ferns[J].Northern Horticulture,2013,37(17):66.
[7]蔡喜悦,陈晓德,刘成,等.外源钙对干旱胁迫下复羽叶栾树幼苗水分及光合特性的影响[J].北方园艺,2013,37(10):58.
CAI Xi-yue,CHEN Xiao-de,LIU Cheng,et al.Effect of Drought Stress with Exogenous Ca2+on Relative Water Content and the Characteristics of Photosynthesis of Koelreuteria paniculata[J].Northern Horticulture,2013,37(17):58.
[8]岳桦,石喜梅.聚乙二醇模拟干旱胁迫对兔儿伞生理特性的影响[J].北方园艺,2013,37(11):56.
YUE Hua,SHI Xi-mei.Effects of Drought Stress Simulated by PEG-6000 on Physiological Characteristics of Syneilesis aconitifolia[J].Northern Horticulture,2013,37(17):56.
[9]邹原东,韩振芹,陈秀新,等.干旱胁迫对蓝羊草渗透调节物质和抗氧化酶活性的影响[J].北方园艺,2013,37(23):71.
ZOU Yuan-dong,HAN Zhen-qin,CHEN Xiu-xin,et al.Effect of Drought Stress on Osmotic Adjustment Substance and Antioxidative Activity of Leymus chinensis[J].Northern Horticulture,2013,37(17):71.
[10]余莉琳,裴宗平,孔静,等.干旱胁迫下四种矿区生态修复植物的抗旱性研究[J].北方园艺,2013,37(12):61.
YU Li-lin,PEI Zong-ping,KONG Jing,et al.Drought Resistance of Four Plant Species in Ecological Regeneration on Mining Area Under Drought Stress[J].Northern Horticulture,2013,37(17):61.
备注/Memo
第一作者简介:马宏宇(1999-),女,硕士研究生,研究方向为生物与医药。E-mail:1759080900@qq.com.责任作者:文晓鹏(1965-),男,博士,教授,现主要从事分子细胞生物学和植物细胞工程等研究工作。E-mail:xpwensc@hotmail.com.基金项目:贵州省科技计划资助项目(黔科合[2019]3008,黔科合[2019]5105);国家重点研发计划资助项目(2021YFD1600404-2)。收稿日期:2024-01-31