YANG Hailong,ZHOU Dandan,BAI Baoxun,et al.Research Progress of Microbial Remediation of Heavy Metal Pollution in Farmland Soil[J].Northern Horticulture,2023,(05):123-131.[doi:10.11937/bfyy.20221670]
微生物修复农田土壤重金属污染技术研究进展
- Title:
- Research Progress of Microbial Remediation of Heavy Metal Pollution in Farmland Soil
- 文献标志码:
- A
- 摘要:
- 随着社会的不断进步,农田重金属土壤污染愈加复杂,微生物修复重金属具有高效简便、推广成本低、无二次污染等特点,已成为土壤修复研究热点。该文从单一微生物技术、微生物-植物联合技术、微生物-生物炭联合技术、微生物-动物联合技术等方面综述了微生物修复土壤重金属的最新研究进展,并对未来发展方向进行了展望,认为微生物和微生物联合技术的修复机理,超级微生物的驯化培养、组合技术的改进创新、细菌修复的工程化推广是未来研究的重点,可为后续研究微生物修复重金属污染土壤提供思路与参考。
- Abstract:
- With the continuous progress of society,farmland heavy metal soil pollution is becoming more and more complex.Microbial remediation of heavy metals has the characteristics of high efficiency and simplicity,low promotion cost and no secondary pollution.It has become a research hotspot of soil remediation.This study reviewed the latest research progress of microbial remediation of soil heavy metals from the aspects of single microbial technology,microbial plant combined technology,microbial biochar combined technology and microbial animal combined technology.The future development direction was prospected.It was considered that the remediation mechanism of microorganism and microbial combined technology,the domestication and cultivation of super microorganism,the improvement and innovation of combined technology and the engineering promotion of bacterial remediation were the focus of future research,which could provide ideas and references for the follow-up study of microbial remediation of heavy metal contaminated soil.
参考文献/References:
[1]ZHAO F J,MA Y B,ZHU Y G,et al.Soil contamination in China:Current status and mitigation strategies[J].Environmental Science & Technology,2015,49(2):750-759.[2]刘南婷,刘鸿雁,吴攀,等.典型喀斯特地区土壤重金属累积特征及环境风险评价[J].农业资源与环境学报,2021,38(5):797-809.[3]LIU Y,MA Z W,LU J S,et al.Source analysis and environmental risk assessment of heavy metals in Rizhao soil[J].Journal of Geographic Sciences,2016,26(6):735-749.[4]生态环境部,自然资源部.全国土壤污染状况调查公报[EB/OL].(2014-04-17)[2022-04-24].http://www.gov.cn/xinwen/2014-04/17/content_2661765.htm.[5]自然资源部,中国质调查局.中国耕地地球化学调查报告[EB/OL].(2015-06-26)[2022-07-08].https://www.cgs.gov.cn/upload/201506/20150626/gdbg.pdf.[6]ZHANGY X,HUANG B,et al.Soil environmental quality in greenhouse vegetable production systems in Eastern China:Current status and management strategies[J].Chemosphere,2017,170:183-195.[7]KOPITTKE P M,MENZIES N W,WANG P,et al.Soil and the intensification of agriculture for global food security[J].Environment International,2019,132:105078.[8]赵玲,滕应,骆永明.中国农田土壤农药污染现状和防控对策[J].土壤,2017,49(3):417-427.[9]徐贝贝,余爱华.土壤重金属污染源解析的应用与展望[J].应用化工,2021,50(4):1077-1081,1086.[10]齐菲,付同刚,高会,等.污水灌溉农田土壤镉污染研究进展[J].生态与农村环境学报,2022,38(1):10-20.[11]沈仁芳,颜晓元,张甘霖,等.新时期中国土壤科学发展现状与战略思考[J].土壤学报,2020,57(5):1051-1059.[12]徐建明,刘杏梅.“十四五”土壤质量与食物安全前沿趋势与发展战略[J].土壤学报,2020,57(5):1143-1154.[13]胡文友,陶婷婷,田康,等.中国农田土壤环境质量管理现状与展望[J].土壤学报,2021,58(5):1094-1109.[14]GADD G M.Bioremedial potential of microbial mechanisms of metal mobilization and immobilization[J].Current Opinion in Biotechnology,2000,11(3):271-279.[15]党政,代群威,赵玉连,等.生物矿化在重金属污染治理领域的研究进展[J].环境科学研究,2018,31(7):1182-1192.[16]YANG G W,WANG C,VERESOGLOU S D,et al.How soil biota drive ecosystem stability[J].Trends Plant Sci,2018,23(12):1057-1067.[17]YAZA B,YI Z C,DONG Z,et al.Soil biota,antimicrobial resistance and planetary health[J].Environment International,2019,131:105059.[18]LONG J,DING,HUI L,et al.Microbiomes inhabiting rice roots and rhizosphere[J].Fems Microbiology Ecology,2019,95(5):1093-1099.[19]MIKYA H.Effects of heavy metal contamination on soil microbial population[J].Soil Science & Plant Nutrition,1992,38(1):141-147.[20]杨海,黄新,林子增,等.重金属污染土壤微生物修复技术研究进展[J].应用化工,2019,48(6):1417-1422.[21]EL METWALLY S,OUAD O,HELMY M.Next generation sequencing technologies and challenges in sequence assembly[M].New York:Springer,2014.[22]BAO Z,COBB R E,ZHAO H.Accelerated genome engineering through multiplexing[J].Wiley Interdisciplinary Reviews Systems Biology and Medicine,2016,8(1):5-21.[23]黄顺红.铬渣堆场铬污染特征及其铬污染土壤微生物修复研宄[D].长沙:中南大学,2009.[24]廉晶晶. Lysinibacillus sp.Cr-6还原六价铬特性及其在电镀铬污染土壤修复中的应用[D].武汉:中国地质大学,2013.[25]ALOTHMAN Z,NAUSHAD M,ALI R.Kinetic,equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid[J].Environ Sci Pollut Res Int,2013,20(5):3351-3365.[26]陈楠.微生物在重金属污染土壤修复中的作用研究[J].环境科学与理,2016,41(2):86-90.[27]常海伟,刘代欢,贺前锋.重金属污染农田微生物修复机理研究进展[J].微生物学杂志,2018,38(2):114-121.[28]RAI U N,DUBEY S,SHUKLA O P,et al.Screening and identification of early warning algal species for metal contamination in fresh water bodies polluted from point and non-point sources[J].Environmental Monitoring and Assessment,2008,144(1):469-481.[29]LINA V,DUSSAN J.Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus[J].Journal of Hazardous Materials,2009,167(1/2/3):713-716.[30]岳耀权,杨宁,陈宁,等.设施重金属污染土壤微生物修复技术研究进展[J].山东农业科学,2019,51(7):167-172.[31]VOLESKY OLESKY B.Biosorption and me[J].Water Research,2007,41(18):4017-4029.[32]HUANG J H,YUAN F,ZENG G M,et al.Influence of pH on heavy metal speciation and removel from wastewater using micellar-enchanced ultrafiltration[J].Chemosphere,2017,173:199-206.[33]韩辉,蔡红,王晓宇,等.产多胺细菌阻控空心菜富集Cd和Pb效应[J].中国环境科学,2020,40(6):2692-2699.[34]邓敏,程蓉,舒荣波,等.攀西矿区典型重金属污染土壤化学-微生物联合修复技术探索[J].矿产综合利用,2021(4):1-9.[35]FOSSO-KANKEU E,MULABA-BAFUBIANDI A F,MAMBA B B,et al.Prediction of metal-adsorption behaviour in the remediation of water contamination using indigenous microorganisms[J].Journal of Environmental Management,2011,92(10):2786-2793.[36]DEEPIK K V,RAGHURAM M,KARIAL E,et al.Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean[J].Ecotoxicology & Environmental Safety,2016,134(1):1-10.[37]SARKAR S,MUKHERJEEA,PARVIN,et al.Removal of Pb (Ⅱ),As (Ⅲ),and Cr (Ⅵ) by nitrogen starved Papiliotrema laurentii strain RY1[J].Journal of Basic Microbiology 2019,59(10):1016-1030.[38]滕应,骆永明,李振高.污染土壤的微生物修复原理与技术进展[J].土壤,2007,39(4):497-502.[39]WANG Q,CHEN L,HE L Y,et al.Increased biomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth-promoting Neorhizobium huautlense T1-17 and biochar[J].Agriculture Ecosystems & Environment,2016,228:9-18.[40]PEDRERO Z,BRIDOU R,MOUNICOU S,et al.Transformation,localization,and biomolecular binding of Hg species at subcellular level in methylating and nonmethylating sulfate-reducing bacteria[J].Environmental Science & Technology,2012,46(21):11744-11751.[41]熊智慧,朱莹莹,周清,等.产碱菌Alcaligenes sp.qz-1对铬污染土壤中玉米生长和铬累积的影响研究[J].生态科学,2018,37(4):52-58.[42]蔡红,王晓宇,韩辉.产脲酶细菌矿化修复Cd和Pb污染土壤效应和机制[J].中国环境科学,2020,40(11):4883-4892.[43]郝丽娜,常瑞雪,李彦明,等.接种外源微生物对堆肥中重金属铜锌铅形态变化的影响[J].中国农业大学学报,2020,25(5):122-129.[44]CHINNANNAN K,V S R,A P,et al.Biosorption and biotransformation of Cr (VI) by novel Cellulosimicrobium funkei strain AR6[J].Journal of the Taiwan Institute of Chemical Engineers,2017,70:282-290.[45]LI J X,YANG B R,SHI M M,et al.Effects upon metabolic pathways and energy production by Sb(Ⅲ) and As(Ⅲ)/Sb(Ⅲ)-oxidase gene aioa in Agrobacterium tumefaciens GW4[J].PloS One,2017,12(2):1-19.[46]HOCKMANN K,LENZ M,TANDY S,et al.Release of antimony from contaminated soil induced by redox changes[J].Journal of Hazardous Materials,2014,275(2):215-221.[47]LU M,ZHANG Z,SUN S,et al.The use of goosegrass (Eleusine indica) to remediate soil contaminated with petroleum[J].Water Air & Soil Pollution,2010,209(1/2/3/4):181-189.[48]LONG J,DING H L,SAN A N,et al.Microbiomes inhabiting rice roots and rhizosphere[J].Fems Microbiology Ecology,2019,95(5):1093-1099.[49]CHEN D,PAN Q,BAI Y,et al.Effects of plant functional group loss on soil biota and net ecosystem exchange:A plant removal experiment in the Mongolian grassland[J].Journal of Ecology,2016,104(3):734-743.[50]LU T,KE M,LAVOIE M,et al.Rhizosphere microorganisms can influence the timing of plant flowering[J].Microbiome,2018,6(1):231.[51]CRISMAN T J,PARKER C N,JENKINS J L,et al.Understanding false positives in reporter gene assays:In silico chemogenomics approaches to prioritize cell-based HTS data[J].Journal of Chemical Information and Modeling,2007,47(4):1319-1327.[52]王庆宏,郑逸,李倩玮,等.污染土壤生物联合修复机制研究进展[J].环境科学研究,2022,35(1):246-256.[53]HAYAT R,ALI S,AMARA U,et al.Soil beneficial bacteria and their role in plant growth promotion:A review[J].Annals of Microbiology,2010,60(4):579-598.[54]QIANG H,SOMMERFELD M,JARVIS E,et al.Microalgal triacylglycerols as feedstocks for biofuel production:Perspectives and advances[J].The Plant Journal,2008,54(4):621-639.[55]ZAIDI S,USMANI S,SINGH B,et al.Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea[J].Chemosphere,2006,64(6):991-997.[56]张璐.微生物强化重金属污染土壤植物修复的研究[D].长沙:湖南大学,2007.[57]WANI P A,ZAIDI K A.Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil[J].Biotechnology Letters,2008,30(1):159-163.[58]孙楠,张胜爽,张凌云,等.植物与微生物协同修复土壤铅污染修复效应[J].有色金属(冶炼部分),2021(3):122-128,154.[59]刘琛,郭彬,林义成,等.丛枝菌根真菌对金叶六道木镉吸收及根际真菌群落结构的影响[J].土壤学报,2021,58(2):495-504.[60]RAJKUMAR M,FREITAS H.Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard[J].Bioresource Technology,2008,99(9):3491-3498.[61]杨雪艳,蒋代华,史进纳,等.“双耐”细菌-香根草对铅镉复合污染土壤的修复机理[J].应用与环境生物学报,2016,22(5):884-890.[62]孙瑞波,盛下放,李娅,等.南京栖霞重金属污染区植物富集重金属效应及其根际微生物特性分析[J].土壤学报,2011,48(5):1013-1020.[63]吴敏,关锐,关旸,等.土壤重金属污染的微生物修复机理研究进展[J].哈尔滨师范大学自然科学学报,2014,30(3):147-150.[64]LI W C,YE Z H,WANG M H.Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant,Sedum alfredii[J].Plant and Soil,2010,326(1):453-467.[65]LUO J,CHENG H,REN J,et al.Mechanistic insights from DGT and soil solution measurements on the uptake of Ni and Cd by Radish[J].Environmental Science & Technology,2014,48(13):7305-7313.[66]SCHALK I J,HANNAUER M,BRAUD A.New roles for bacterial siderophores in metal transport and tolerance[J].Environmental Microbiology,2011,13(11):2844-2854.[67]SHENG X F,XIA J J,JIANG C Y,et al.Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J].Environmental Pollution,2008,156(3):1164-1170.[68]DIMKPA C O,MRTEN D,SVATO A,et al.Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores[J].Soil Biology & Biochemistry,2009,41(1):154-162.[69]KUMAR K V,SINGH N,BEHL H M,et al.Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil[J].Chemosphere,2008,72(4):678-683.[70]MACHUCA A,PEREIRA G,AGUIAR A,et al.Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations[J].Letters in Applied Microbiology,2010,44(1):7-12.[71]黄文.产表面活性剂根际菌协同龙葵修复镉污染土壤[J].环境科学与技术,2011,34(10):48-52.[72]SHENG X,HE L,WANG Q,et al.Effects of inoculation of biosurfactant-producing Bacillus sp.J119 on plant growth and cadmium uptake in a cadmium-amended soil[J].Journal of Hazardous Materials,2008,155(1/2):17-22.[73]XU G,LU Y,SUN J,et al.Recent advances in biochar applications in agricultural soils:Benefits and environmental implications[J].Clean-Soil Air Water,2012,40(10):1093-1098.[74]GOLDBERG E D.Black carbon in the environment:Properties and distribution[J].J.Wiley,1985,28(9):38-40.[75]WARNOCK D D,LEHMANN J,KUYPER T W,et al.Mycorrhizal responses to biochar in soil-concepts and mechanisms[J].Plant & Soil,2007,300(1/2):9-20.[76]WANG X,SUN S Y,LU J L,et al.Remediating chlorpyrifos-contaminated soil using immobilized microorganism technology[J].Polish Journal of Environmental Studies,2019,28(1):349-357.[77]韩光明,孟军,曹婷,等.生物炭对菠菜根际微生物及土壤理化性质的影响[J].沈阳农业大学学报,2012,43(5):515-520.[78]ANTONIETTI S.Effect of biochar amendment on soil carbon balance and soil microbial activity[J].Soil Biology and Biochemistry,2009,41(6):1301-1310.[79]TOMALIA D A,BAKER H,DEWALD J,et al.A new class of polymers:Starburst-dendritic macromolecules[J].Polymer Journal,1985,17(1):117.[80]HAN B,XIANG L,PI C,et al.Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb:A meta-analysis-Science Direct[J].Science of the Total Environment,2020,755:142582.[81]CHEN D,LIU X,BIAN R,et al.Effects of biochar on availability and plant uptake of heavy metals:A meta-analysis[J].Journal of Environmental Management,2018,222(15):970-977.[82]郝大程,周建强,韩君.土壤重金属和有机污染物的微生物修复:生物强化和r生物刺激[J].生物技术通报,2017,33(10):9-17.[83]ZHU X,CHEN B,ZHU L,et al.Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation:A review[J].Environmental Pollution,2017,227:98-115.[84]LING X,CHEN L,LIU Z,et al.Composition of microbial community in pig manure biochar-amended soils and the linkage to the heavy metals accumulation in rice at harvest[J].Land Degradation & Development,2018,29(7).2189-2198.[85]邵佳,赵远来,冯琰玉,等.生物质炭对长期铅镉复合污染土壤微生物群落丰度及活性的影响[J].农业环境科学学报,2022,41(1):66-74.[86]李琋,王雅璇,罗廷,等.利用生物炭负载微生物修复石油烃-镉复合污染土壤[J].环境工程学报,2021,15(2):677-687.[87]戚鑫,陈晓明,肖诗琦,等.生物炭固定化微生物对U、Cd污染土壤的原位钝化修复[J].农业环境科学学报,2018,37(8):1683-1689.[88]邵元虎,张卫信,刘胜杰,等.土壤动物多样性及其生态功能[J].生态学报,2015,35(20):6614-6625.[89]SUN Y,ZHAO L,LIX,et al.Response of soil bacterial and fungal community structure succession to earthworm addition for bioremediation of metolachlor[J].Ecotoxicology and Environmental Safety,2019,189:109926.[90]ROSS B D,VERSTER A J,RADEY M C,et al.Human gut bacteria contain acquired interbacterial defence systems[J].Nature,2019,575(7781):224-228.[91]ZEEVI D,KOREM T,GODNEVA A,et al.Structural variation in the gut microbiome associates with host health[J].Nature,2019,568(7750):1-6.[92]ZIMMERMANN M,ZIMMERMANN KOGADEEVA M,WEGMANN R,et al.Separating host and microbiome contributions to drug pharmacokinetics and toxicity[J].Science,2019,363(6427):600.[93]WANG H T,DING J,XIONG C,et al.Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica[J].Environmental Pollution,2019,251:110-116.[94]杨春,谭盼,桂程,等.微生物燃料电池修复重金属污染土壤的研究进展[J].化学与生物工程,2020,37(1):1-7.[95]CHEN S Y,LIN P L.Optimization of operating parameters for the metal bioleaching process of contaminated soil[J].Separation & Purification Technology,2010,71(2):178-185.[96]BENIZRI E,KIDD P S.The role of the rhizosphere and microbes associated with hyperaccumulator plants in metal accumulation[J].Discover the World′s Research,2018(1):157-188.
相似文献/References:
[1]石平,付艳华,吕安才,等.植物修复技术在城市工业废弃地中的应用研究[J].北方园艺,2013,37(04):76.
[2]高雁鹏,石平,魏欣茹.工业废弃地的植物修复演替过程研究[J].北方园艺,2013,37(12):78.
GAO Yan-peng,SHI Ping,WEI Xin-ru.Study on the Succession Rules of Phytoremediation in Industrial Wasteland[J].Northern Horticulture,2013,37(05):78.
[3]石 平,张广新,付艳华,等.葫芦岛市工业废弃地中植物对重金属的利用程度研究[J].北方园艺,2013,37(09):196.
SHI Ping,ZHANG Guang-xin,FU Yan-hua,et al.Research on Effects of Plants on the Heavy Metals Bioavailability in Urban Derelict Land of Huludao City[J].Northern Horticulture,2013,37(05):196.
[4]穆瑞瑞,张家洋,周勇.微生物修复在农村土壤污染中的作用分析[J].北方园艺,2012,36(09):200.
MU Rui-rui,ZHANG Jia-yang,ZHOU Yong.Analysis of the Contribution of Microbial Reparation in Polluted Soils of Rural Areas[J].Northern Horticulture,2012,36(05):200.
备注/Memo
第一作者简介:杨海龙(1992-),男,硕士研究生,研究方向为生态修复。E-mail:yhl9209@126.com.责任作者:刘楠(1982-),男,博士,副教授,现主要从事生态修复等研究工作。E-mail:lnan2008@zju.edu.cn.基金项目:国家农业环境中原观测实验点观测监测资助项目(NAES-AE-056);河南省科技攻关资助项目(222102320282)。收稿日期:2022-04-24