SUN Xiaochun,LI Huirong.Metabonomic Analysis of Platycodon grandiflorus Leaves Under Drought Stress[J].Northern Horticulture,2022,(20):112-118.[doi:v10.11937/bfyy.20221130]
干旱胁迫下桔梗叶片的代谢组学分析
- Title:
- Metabonomic Analysis of Platycodon grandiflorus Leaves Under Drought Stress
- 文献标志码:
- A
- 摘要:
- 以桔梗叶片为试材,使用聚乙二醇(PEG)模拟干旱胁迫,采用超高效液相色谱串联质谱(UPLC-MS/MS)对干旱组(P1)和对照组(CK)的代谢组学进行分析,研究了桔梗对干旱胁迫的代谢响应机制,以期为桔梗抗干旱品种选育提供参考依据。结果表明:共检测到632种代谢物,干旱胁迫后检测到78种显著差异代谢物,其中上调66种,下调12种,主要是氨基酸及其衍生物、脂质、有机酸及其衍生物和核苷酸及其衍生物等;KEGG主要富集到氨酰转运RNA生物合成、2-氧羰基酸代谢、氨基酸生物合成等代谢途径;阐明了干旱胁迫下桔梗叶片中代谢物的变化,表明氨基酸和脂类相关代谢物是桔梗应答干旱胁迫的主要产物。
- Abstract:
- The leaves of Platycodon grandiflorum were used as experimental materials,and polyethylene glycol (PEG) was used to simulate drought stress,widely-targeted metabolomics ultra-performance liquid chromatography-mass spectrometry(UPLC-MS/MS) was used to detected metabolites of drought stress group(P1) and control group(CK),to investigate the metabolic response of Platycodon grandiflorus to drought stress.Multivariate statistical analysis coupled with univariate statistical analysis were used,in order to provide reference for the breeding of drought-resistant Platycodon grandiflorus.The results showed that there were 632 metabolites and 78 differential metabolites after drought stress were detected,66 of which were up-regulated and 12 were down-regulated.Differential metabolites were mainly concentrated in amino acids and their derivatives,lipids,organic acids and their derivatives,nucleotides and their derivatives.KEGG enrichment analysis showed that the significantly pathways were aminoayl-tRNA biosynthesis,2-oxocarboxylic acid metabolism and biosynthesis of amino acids.The changes of metabolites in the Platycodon grandiflorus leaves under drought stress were elucidated.Amino acid and lipid related metabolites were the main products of Platycodon grandiflorus responsed to drought stress.
参考文献/References:
[1]CHOI J H,JIN S W,CHOI C Y,et al.Saponins from the roots of Platycodon grandiflorum ameliorate high fat diet-induced non-alcoholic steatohepatitis[J].Biomedicine & Pharmacotherapy,2017,86:205-212.[2]孙晓春,黄文静,李铂.水杨酸对干旱胁迫下桔梗幼苗生理生化指标及相关基因表达的影响[J].中国农业科技导报,2022,24(1):63-70.[3]李敏,张萌,王士杰,等.短期干旱胁迫对桔梗生理生态及其皂苷含量的影响[J].中成药,2021,43(10):2910-2916.[4]赵璞,李梦,及增发,等.植物干旱响应生理对策研究进展[J].中国农学通报,2016,32(15):86-92.[5]WANG Y,LI X Y,LI C X,et al.The regulation of adaptation to cold and drought stresses in Poa crymophila Keng revealed by integrative transcriptomics and metabolomics analysis[J].Frontiers in Plant Science,2021(12):631117.[6]方彦,曾秀存,马骊,等.低温胁迫下冬油菜陇油7号根部代谢组学分析[J].干旱地区农业研究,2021,39(4):80-85,101.[7]牟丹,杨帆,卡着才让,等.高加索三叶草响应不同降温模式低温胁迫的代谢组学分析[J].草地学报,2021,29(9):1877-1884.[8]时羽杰,邬晓勇,唐媛,等.藜麦花期水分胁迫下的代谢组学分析[J].河南农业大学学报,2020,54(6):921-930.[9]李小冬,王小利,王茜,等.干旱胁迫下高羊茅叶片的代谢组学分析[J].中国草地学报,2016,38(5):59-65.[10]郭晋敏,杨升,陈秋夏,等.极端低温胁迫下秋茄LC-MS代谢组学分析[J/OL].分子植物育种,(2021-09-09)[2021-11-05].http://kns.cnki.net/kcms/detail/46.1068.S.20210909.1512.022.html.[11]孙立方,柯甫志,聂振朋,等.采用UPLC-MS/MS技术分析‘枸头橙’针刺和枝代谢物[J].果树学报,2020,37(7):962-970.[12]KISHOR P B K,SANGAM S,AMRUTHA R N,et al.Regulation of proline biosynthesis,degradation,uptake and transport in higher plants:Its implications in plant growth and abiotic stress tolerance[J].Current Science,2005,88(3):424-438.[13]武菲,付玉杰.葫芦巴碱在植物体内的生理功能[J].安徽农业科学,2012,40(10):5876-5878,5914.[14]刘晓东,孙广玉,李威.干旱对苜蓿叶片葫芦巴碱含量和渗透调节能力的影响[J].干旱地区农业研究,2009,27(4):121-124.[15]王蕊,孙广玉.干旱对大豆叶片葫芦巴碱含量和渗透调节的影响[J].中国沙漠,2010,30(3):552-555.[16]王玮玮,唐亮,周文龙,等.谷胱甘肽生物合成及代谢相关酶的研究进展[J].中国生物工程杂志,2014,34(7):89-95.[17]VIVANCOS P D,WOLFF T,MARKOVIC J,et al.A nuclear glutathione cycle within the cell cycle[J].Biochemical Journal,2010,431(2):169-178.[18]FOYER C H,NOCTOR G.Redox regulation in photosynthetic organisms:Signaling,acclimation,and practical implications[J].Antioxidants & Redox Signaling,2009,11(4):861-905.[19]GIGON A,MATOS A R,LAFFRAY D,et al.Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia)[J].Annals of Botany,2004(3):345-351.[20]熊欢欢,张含国,张磊,等.干旱胁迫下长白落叶松的代谢组学分析[J].东北林业大学学报,2019,47(4):1-7.[21]MURAKEZY P,NAGY Z,DUHAZ C,et al.Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary[J].Journal of Plant Physiology,2003,160(4):395-401.[22]DJILIANOV D,IVANOV S,MOYANKOVA D,et al.Sugar ratios,glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii[J].Plant Biology,2011,13(5):767-776.[23]管仁伟,郭瑞齐,林慧彬,等.基于植物代谢组学技术的干旱及盐胁迫对黄芩中黄酮类成分影响的研究[J].中草药,2022,53(5):1504-1511.[24]王改利,魏忠,贺少轩,等.土壤干旱胁迫对酸枣叶片黄酮类代谢及某些生长和生理指标的影响[J].植物资源与环境学报,2011,20(3):1-8.[25]李丹丹,梁宗锁,普布卓玛,等.干旱胁迫对紫花苜蓿黄酮类化合物含量及其合成途径关键酶活性的影响[J].西北植物学报,2020,40(8):1380-1388.
相似文献/References:
[1]赵姣姣,刘文科,杨其长,等.氮素水平和形态对基质栽培桔梗生长及生理参数的影响[J].北方园艺,2013,37(04):162.
[2]方 晶.高压电场对干旱胁迫下黄瓜种子萌发的影响[J].北方园艺,2014,38(13):41.
FANG Jing.Effect of High Voltage Electric Field on Germination of Cucumber Seeds Under Drought Stress[J].Northern Horticulture,2014,38(20):41.
[3]王贵平,王金政,薛晓敏,等.叶面喷施甜菜碱对干旱胁迫下苹果幼树[J].北方园艺,2014,38(12):10.
WANG Gui-ping,WANG Jin-zheng,XUE Xiao-min,et al.Effect of Spraying Glycinebetaine on Physiological Responses of Apple Young Trees Under Drought Stress[J].Northern Horticulture,2014,38(20):10.
[4]张 爽,赵 纯,董 然,等.槭叶草对PEG-6000模拟干旱胁迫的生理响应[J].北方园艺,2013,37(22):74.
ZHANG Shuang,ZHAO Chun,DONG Ran,et al.Physiological Responses of Mukdenia rossii Under PEG-6000 Drought Stress[J].Northern Horticulture,2013,37(20):74.
[5]赵丽莉,徐芳芳,荀 洋,等.桔梗花药愈伤组织诱导培养基筛选[J].北方园艺,2014,38(01):95.
ZHAO Li-li,XU Fang-fang,XUN Yang,et al.Screening of Callus Induction Medium of Platycodon grandiflorumAnther[J].Northern Horticulture,2014,38(20):95.
[6]蔡喜悦,陈晓德,刘成,等.外源钙对干旱胁迫下复羽叶栾树幼苗水分及光合特性的影响[J].北方园艺,2013,37(10):58.
CAI Xi-yue,CHEN Xiao-de,LIU Cheng,et al.Effect of Drought Stress with Exogenous Ca2+on Relative Water Content and the Characteristics of Photosynthesis of Koelreuteria paniculata[J].Northern Horticulture,2013,37(20):58.
[7]梁蕊芳,康利平,徐 龙,等.干旱胁迫对樱桃番茄幼苗叶片生长特性的影响[J].北方园艺,2013,37(23):12.
LIANG Rui-fang,KANG Li-ping,XU Long,et al.Effect of Drought Stress on Growth Characteristics of Leaves in Lycopersicom esculentum var. cerasiforme Seedlings[J].Northern Horticulture,2013,37(20):12.
[8]王少平,黄超.切花菊‘黄中黄’对干旱胁迫的生理响应[J].北方园艺,2013,37(15):64.
WANG Shao-ping,HUANG Chao.Physiological Response of Cut Chrysanthemum ‘Huangzhonghuang’ to Drought Stress[J].Northern Horticulture,2013,37(20):64.
[9]董延龙,常缨.干旱胁迫对五种观赏蕨类植物叶绿素荧光特性的影响[J].北方园艺,2013,37(15):66.
DONG Yan-long,CHANG Ying.Effects of Drought Stress on Chlorophyll Fluorescence Characteristics of Five Species of Ornamental Ferns[J].Northern Horticulture,2013,37(20):66.
[10]岳桦,石喜梅.聚乙二醇模拟干旱胁迫对兔儿伞生理特性的影响[J].北方园艺,2013,37(11):56.
YUE Hua,SHI Xi-mei.Effects of Drought Stress Simulated by PEG-6000 on Physiological Characteristics of Syneilesis aconitifolia[J].Northern Horticulture,2013,37(20):56.
备注/Memo
第一作者简介:孙晓春(1985-),女,博士,副教授,现主要从事药用植物抗逆性等研究工作。E-mail:sunxiaochun08@163.com.基金项目:国家自然科学基金资助项目(81703656);陕西高校青年创新团队资助项目(陕教[2019]90号);云南省科技厅基础研究专项资助项目(202101AU070005)。收稿日期:2022-03-24