SUN Tianguo,ZHANG Meijuan,MA Tianyi,et al.Physiological and Biochemical Mechanism of Exogenous Spermidine Improving Drought Resistance in Melon Seedlings Under Drought Stress[J].Northern Horticulture,2022,(12):34-39.[doi:10.11937/bfyy.20215174]
外源亚精胺对干旱胁迫下甜瓜幼苗抗旱性影响的生理生化机制
- Title:
- Physiological and Biochemical Mechanism of Exogenous Spermidine Improving Drought Resistance in Melon Seedlings Under Drought Stress
- Keywords:
- melon seedling; osmotic stress; spermidine; antioxidative system
- 文献标志码:
- A
- 摘要:
- 以“甜脆王”甜瓜幼苗为试验材料,采用营养液培养法,研究20% PEG 6000渗透胁迫下1 mmol?L-1亚精胺(Spd)对甜瓜幼苗抗旱的调控机制,以期为多胺在抗旱方面的研究提供参考依据。结果表明:1 mmol?L-1 Spd能够提高20% PEG 6000胁迫下超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性,降低丙二醛含量,提高叶绿素、脯氨酸、可溶性糖和可溶性蛋白质含量。表明外源Spd起到缓解干旱胁迫对甜瓜幼苗伤害的作用,增强甜瓜幼苗对干旱逆境的适应性。
- Abstract:
- ‘Tiancuiwang’ melon seedlings was used as experimental matireials by nutrient solution culture experiments.The regulation mechanism of 1 mmol? L-1 spermidine(Spd) on drought resistance of melon seedlings under 20% PEG 6000 osmotic stress was studied,in order to provide reference for the study of polyamines in drought resistance.The results showed that spraying 1 mmol ? L-1 Spd under drought stress,activities of SOD,POD and CAT could be significantly increased.The contents of chlorophyll,proline,soluble sugar and soluble protein were improved.The content of MDA was reduced content.It indicated that exogenous Spd treatment could alleviate the damage caused by drought stress and enhance the tolerance of melon seedlings to drought environments.
参考文献/References:
[1]刘永佳,黄生志,方伟,等.不同季节气象干旱向水文干旱的传播及其动态变化[J].水利学报,2021,52(1):93-102.[2]龚娟,何柳月,王素芬.基于模糊粗糙集模型的农业旱灾风险评估:以河套灌区为例[J].自然灾害学报,2021,30(2):147-158.[3]代萌,黄生志,黄强,等.干旱多属性风险动态评估与驱动力分析[J].水力发电学报2019,38(8):15-26.[4]MEHER,SHIVAKRISHNA P,ASHOK REDDY K,et al.Effect of PEG-6000 imposed drought stress on RNA content,relative water content (RWC),and chlorophyll content in peanut leaves and roots[J].Saudi Journal of Biological Sciences,2018,25(2):285-289.[5]KUSANO T,YAMAGUCHI K,BERBERICH T,et al.Advances in polyamine research in 2007[J].Journal of Plant Research,2007,120(3):345-350.[6]YAMAMOTO A,SHIM I S,FUJIHARA S.Chilling-stress responses by rice seedlings grown with different ammonium concentrations and its relationship to leaf spermidine content[J].Jouranl of Plant Biology,2012,55;191-197.[7]IMAI A,MATSUYAMA T,HANZAWA Y,et al.Spermidine synthase genes are essential for survival of Arabidopsis[J].Plant Physiology,2004,135(3):1565-1573.[8]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.[9]肖美秀,林文雄,陈冬梅,等.镉胁迫对耐性不同的水稻幼苗膜脂过氧化和保护酶活性的影响[J].中国生态农业学报,2006,16(4):256-258.[10]陈福明,陈顺伟.混合液法测定叶绿素含量的研究[J].林业科技通讯,1984,2(1):19-23.[11]杨凤军,李天来,臧忠婧,等.干旱胁迫对番茄幼苗光合特性及叶绿体超微结构的影响[J].应用生态学报,2017,28(8):2588-2596.[12]惠竹梅,王智真,胡勇,等.2,4-表油菜素内酯对低温胁迫下葡萄幼苗抗氧化系统及渗透调节物质的影响[J].中国农业科学,2013,46(5):1005-1013.[13]张永平,许爽,杨少军,等.外源亚精胺对低温胁迫下甜瓜幼苗生长和抗氧化系统的影响[J].植物生理学报,2017,53(6):1087-1096.[14]王尚堃.多胺对干旱胁迫下杏苗三个酶活性指标的影响[J].北方园艺,2018(7):37-41.[15]李丽杰,顾万荣,孟瑶,等.干旱胁迫下亚精胺对玉米幼苗抗旱性影响的生理生化机制[J].应用生态学报,2018,29(2):554-564.[16]LI X,GONG B,XU K.Interaction of nitric oxide andpolyamines involves antioxidants and physiological strategies against chilling-induced oxidative damage in Zingiber officinale Roscoe[J].Scientia Horticulturae,2014,170:237-248.[17]AZIZ A,LARHER F.Changes in polyamine titers associated with the proline response and osmotic adjustment of rape leaf discs submitted to osmotic stresses[J].Plant Sci,1995,112:178-186.[18]邹芳,杨秀柳,黄思麒,等.外源亚精胺对干旱胁迫下甜高粱幼苗生长及生理生化指标的影响[J].中国农业科技导报,2020,22(4):44-52.[19]SHI H T,YE T T,CHAN Z L.Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses[J].Journal of Proteome Research,2013,12:4807-4829.[20]SHI H T,CHAN Z L.Improvement of plant abiotic stress tolerance through modulation of the polyamine pathways[J].Journal of Integrative Plant Biology,2014,56:114-121.[21]KASUKABE Y,HE L X,NADA K,et al.Overexpression of spermi-dine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenic Arabidopsis thalianas[J].Plant and Cell Physiology,2004,45(6):712-722.
相似文献/References:
[1]任文奇,潘雄波,向丽霞,等.不同喷施频率外源γ-氨基丁酸对Ca(NO3)2胁迫下甜瓜幼苗生长的影响[J].北方园艺,2015,39(23):6.[doi:10.11937/bfyy.201523002]
REN Wenqi,PAN Xiongbo,XIANG Lixia,et al.Effect of Different Spraying Frequency of Exogenous γ-aminobutyric Acid on Melon Seedlings Growth Under Ca(NO3)2 Stress[J].Northern Horticulture,2015,39(12):6.[doi:10.11937/bfyy.201523002]
[2]黄金侠,田松,闫黎明,等.不同方式施用壳寡糖对甜瓜幼苗的影响[J].北方园艺,2022,(09):61.[doi:10.11937/bfyy.20214278]
HUANG Jinxia,TIAN Song,YAN Liming,et al.Effects of Different Application Methods of Chitosan Oligosaccharide Solution on Seedlings of Muskmelon[J].Northern Horticulture,2022,(12):61.[doi:10.11937/bfyy.20214278]
[3]李蒙,万雨,熊婷婷,等.不同氮肥浓度对甜瓜幼苗生长和营养元素积累的影响[J].北方园艺,2023,(11):45.[doi:10.11937/bfyy.20223613]
LI Meng,WAN Yu,XIONG Tingting,et al.Effects of Different Nitrogen Fertilizer Concentrations on SeedlingGrowth and Nutrient Accumulation in Melon Seedlings[J].Northern Horticulture,2023,(12):45.[doi:10.11937/bfyy.20223613]
备注/Memo
第一作者简介:孙天国(1966-),男,硕士,副教授,现主要从事植物抗逆性机制等研究工作。E-mail:stg1966@163.com.基金项目:黑龙江省省属高等学校基本科研业务费科研资助项目(135409427);齐齐哈尔大学大学生创新创业训练资助项目(202010232182)。收稿日期:2021-12-19