WANG Zhengwei,HE Qiulan,WU Xi,et al.Research Progress on the Impact of Plant Cultivation on Soil Remediation[J].Northern Horticulture,2022,(12):130-137.[doi:10.11937/bfyy.20214782]
植物种植对土壤修复的影响研究进展
- Title:
- Research Progress on the Impact of Plant Cultivation on Soil Remediation
- 文献标志码:
- A
- 摘要:
- 生物修复是既经济又环保且天然的一种生态修复措施,其核心是利用植物种植,既充分利用了植物-微生物-土壤的相互作用达到保护和改善土壤的目的,同时又保护了生态环境。该研究主要从土壤修复问题出发,综述了植物种植对土壤中的养分含量、关键酶活性、重金属、微生物以及油污问题的影响,并对植物种植修复土壤的应用研究前景进行了展望。该综述旨在为土壤修复的具体实施和技术的进一步发展提供参考,使得土地资源得到有效保护和持续利用。
- Abstract:
- Bioremediation is an economical,protected and natural ecological remediation measure,and its core is the use of plant planting,which not only makes full use of plant-microbial-soil interaction to protect and improve soil,but also protects the ecological environment.This study mainly dealed with the problems of soil remediation,summarized the effects of plant planting on soil nutrient content,key enzyme activities,heavy metals,microorganisms and oil pollution,and looked forward to the application and research prospect of plant planting in soil remediation.The purpose of this review was to provide reference for the specific implementation of soil remediation and the further development of technology,so that land resources can be effectively protected and sustainable use.
参考文献/References:
[1]罗雁,刘友林,邓玉龙,等.云南省耕地质量建设与保护管理对策建议[J].安徽农业科学,2015,43(17):100-103.[2]张桃林,王兴祥.土壤退化研究的进展与趋向[J].自然资源学报,2000,15(3):280-284.[3]张翠莲,玛喜.土壤退化研究的进展与趋向[J].北方环境,2010,22(3):42-45.[4]闫正萍.浅析土壤养分失衡及地力退化的原因及危害[J].农民致富之友,2018(7):84.[5]林琦,陈英旭,陈怀满,等.根系分泌物与重金属的化学行为研究[J].植物营养与肥料学报,2003,9(4):425-431.[6]PRADHAN S P,CONRAD J R,PATEREK J R,et al.Potential of phy-toremediation for treatment of PAHs in soil at MGP sites[J].Journal of Soil Contamination,1998,7(4):467-480.[7]BANKS M K,LEE E,SCHWAB A P.Evaluation of dissipation mechanisms for Benzo a pyrene in the rhizosphere of tall fescue[J].Journal of Environmental Quality,1999,28(1):294-298.[8]胡梦淩,曾和平,董达诚,等.腐殖质改良植物修复重金属污染土壤的研究进展[J].生态与农村环境学报,2020,36(3):273-280.[9]TOKUNAGA S,HAKUTA T.Acid washing and stabilization of an artificial arsenic-contaminated soil[J].Chemosphere,2002,46(3):31-38.[10]SUN G,LUO P,WU N,et al.Stellera chamaejasme L.increases soil N availability,turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China[J].Soil Biology and Biochemistry,2008,41(1):86-91.[11]王文颖,马永贵,徐进,等.高寒矮嵩草(Kobresia humilis)草甸植物吸收土壤氮素的多元化途径研究[J].中国科学:地球科学,2012,42(10):1264-1272.[12]张潇喜,曾凯,蔡义民,等.青藏高原东部乡土植物对高寒沙化草地土壤性质的影响[J].草业科学,2018,35(4):749-759.[13]马建国,侯扶江,BOWATTE S.青藏高原高寒草甸有毒植物对土壤理化性质和土壤微生物丰度的影响[J].草业科学,2019,36(12):3033-3040.[14]袁雪红,高照良,张翔,等.不同豆科植物对黄土高原弃土场的改良效果[J].中国水土保持科学,2016,14(4):121-127.[15]骆娟,王宏信,耿静.不同地被植物对土壤养分含量和土壤酶活性的影响[J].天津农业科学,2019,25(4):18-21.[16]范林洁,邵学新,吴周,等.不同地被覆盖对新围海涂土壤性质的影响[J].华东森林经理,2008,22(1):24-27,32.[17]颜佩风.辽西坡耕地不同植物篱对水土流失及土壤养分空间分布的影响[J].水土保持应用技术,2017,2(2):4-6.[18]张博文,李富平,许永利.10种草本植物对石矿迹地土壤的改良效果[J].江苏农业科学,2018,46(21):286-290.[19]齐鹏程.川西北高寒沙地四种适生植物根际土壤有机碳、氮组分及酶活性特征研究[D].雅安:四川农业大学,2016.[20]吴天马,丁晖,刘志磊,等.外来入侵植物紫茎泽兰对土壤养分的影响[J].生态与农村环境学报,2007,23(2):94-96.[21]张金鹏.呼伦贝尔沙化草地植被恢复模式效果评价及动态分析[D].北京:北京林业大学,2010.[22]牛犇,张立峰,马荣荣,等.高寒草甸土壤微生物量及酶活性的研究[J].南开大学学报(自然科学版),2016,49(4):53-60.[23]边雪廉,赵文磊,岳中辉,等.土壤酶在农业生态系统碳、氮循环中的作用研究进展[J].中国农学通报,2016,32(4):171-178.[24]武琳,黄欠如,叶川,等.香根草篱对红壤坡耕地坡面土壤酶活性的影响[J].土壤,2013,45(4):673-677.[25]曹慧芳,陈景震,蒋丽娟,等.油料植物不同栽培模式对土壤微生物及酶活性的影响[J].湖南林业科技,2018,45(6):24-28.[26]曹成有,滕晓慧,崔振波,等.植物固沙工程对土壤生物活性的影响[J].辽宁工程技术大学学报,2006,25(4):606-609.[27]焦扬,罗学刚,唐永金,等.铀对不同植物根际土壤酶活的影响[J].环境科学与技术,2016,39(3):33-37,55.[28]斯贵才,袁艳丽,王建,等.围封对当雄县高寒草原土壤微生物和酶活性的影响[J].草业科学,2015,32(1):1-10.[29]SOOD S G.Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants[J].FEMS Microbiology Ecology,2003,45(3):219-227.[30]贾渊.荒漠草原植物根分泌物及其有机酸组分对土壤中微生物及养分的影响[D].呼和浩特:内蒙古师范大学,2019.[31]王涛.荒漠化草原植物类型对土壤微生物及细菌漆酶基因多样性的影响[D].银川:宁夏大学,2019.[32]耿贵.作物根系分泌物对土壤碳、氮含量、微生物数量和酶活性的影响[D].沈阳:沈阳农业大学,2011.[33]WAGG C,JANSA J,SCHMID B,et al.Belowground biodiversity effects of plant symbionts support aboveground productivity[J].Ecology Letters,2011,14(10):1001-1009.[34]ROJAS X,GUO J Q,LEFF J W,et al.Infection with a shoot-specific fungal endophyte (Epichlo) alters tall fescue soil microbial communities[J].Microbial Ecology,2016,72(1):197-206.[35]姚祥.醉马草内生真菌共生体对草地植物组成及土壤微生物群落多样性的影响[D].兰州:兰州大学,2019.[36]ALKORTA I,HERNANDEZ-ALLICA J,BECERRIL J M,et al.Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc,cadmium,lead,and arsenic[J].Reviews in Environmental Science and Biotechnology,2004,3(1):71-90.[37]FARRAG K,SENESI N,ROVIRA P S,et al.Effects of se-ected soil properties on phytoremediation applicability for heavy-metal-contaminated soils in the Apulia region,Southern Italy[J].Environmental Monitoring and Assessment,2012,184(11):6593-6606.[38]郭世财,杨文权.重金属污染土壤的植物修复技术研究进展[J].西北林学院学报,2015,30(6):81-87.[39]能凤娇,刘鸿雁,马莹,等.根际促生菌在植物修复重金属污染土壤中的应用研究进展[J].中国农学通报,2013,29(5):187-191.[40]王岚,戴闽玥,严重玲.磷镉交互作用对白骨壤幼苗体内镉的亚细胞分布和生理特性的影响[J].农业环境科学学报,2018,37(4):640-646.[41]HAAG-KERWER A,SCHFER H J,HEISS S,et al.Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis[J].Journal of Experimental Botany,1999,50(341):1827-1835.[42]KRMER U,PICKERING I J,PRINCE R C,et al.Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species[J].Plant physiology,2000,122(4):1343-1353.[43]ZHAO H,BUTLER E,RODGERSS J,et al.Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements[J].The Journal of Biological Chemistry,1998,273(44):28713-28720.[44]周显勇,刘鸿雁,刘艳萍,等.植物修复重金属和抗生素复合污染土壤微生物数量和酶活性的变化[J].农业环境科学学报,2019,38(6):1248-1255.[45]能凤娇,吴龙华,刘鸿雁,等.芹菜与伴矿景天间作对污泥农用锌镉污染土壤化学与微生物性质的影响[J].应用生态学报,2013,24(5):1428-1434.[46]CHEN T B,WEI C Y,HUANG Z C,et al.Arsenic hyperaccumulator Pteris vittata L.and its arsenic accumulation[J].Chinese Science Bulletin,2002,47(11):902-905.[47]邱媛,何际泽,杨汉彬,等.矿区常见乔木叶片重金属特征及其修复应用[J].生态环境学报,2013,22(1):151-156.[48]施翔,陈益泰,王树凤,等.废弃尾矿库15种植物对重金属Pb、Zn的积累和养分吸收[J].环境科学,2012,33(6):2021-2027.[49]黄明煜,章家恩,全国明,等.土壤重金属的超富集植物研发利用现状及应用入侵植物修复的前景综述[J].生态科学,2018,37(3):194-203.[50]JIANG H,LI T Q,HAN X,et al.Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils[J].Environmental Monitoring and Assessment,2012,184(10):6325-6335.[51]万敏,周卫,林葆.不同镉积累类型小麦根际土壤低分子量有机酸与镉的生物积累的研究[J].植物营养与肥料学报,2003,9(3):331-336.[52]彭红云,杨肖娥.香薷植物修复铜污染突然感到研究进展[J].水土保持学报,2005,19(5):195-199.[53]徐良将,张明礼,杨浩.土壤重金属镉污染的生物修复技术研究进展[J].南京师大学报(自然科学版),2011,34(1):102-106.[54]王庆海,却晓娥.治理环境污染的绿色植物修复技术[J].中国生态农业学报,2013,21(2):261-266.[55]何兰兰,角媛梅,王李鸿,等.Pb、Zn、Cu、Cd的超富集植物研究进展[J].环境科学与技术,2009,32(11):120-123.[56]聂亚平,王晓维,万进荣,等.几种重金属(Pb、Zn、Cd、Cu)的超富集植物种类及增强植物修复措施研究进展[J].生态科学,2016,35(2):174-182.[57]肖鹏飞,李法云,付宝荣,等.土壤重金属污染及其植物修复研究[J].辽宁大学学报(哲学社会科学版),2004,31(3):279-283.[58]黄白飞,辛俊亮.植物积累重金属的机理研究进展[J].草业学报,2013(1):303-310.[59]冯刚,王鑫,白九元,等.油菜对Cd污染土壤的修复潜力分析[J].四川大学学报(自然科学版),2018,55(1):172-178.[60]武琳霞,丁小霞,李培武,等.我国油菜镉污染及菜籽油质量安全性评估[J].农产品质量与安全,2016(1):41-46.[61]张守文.重金属Cd污染土壤的植物修复研究[D].杨凌:西北农林科技大学,2009.[62]魏晓燕.黄河兰州段直灌区蔬菜中重金属的积累、迁移转化及毒性效应研究[D].兰州:兰州交通大学,2013.[63]杨红飞,王友保,李建龙.铜、锌污染对水稻土中油菜(Brassica chinensis L.)生长的影响及累积效应研究[J].生态环境学报,2011,20(10):88-95.[64]齐田田,余垚,王琪,等.土壤调控剂对镉污染土壤植物修复效率的影响[J].环境科学与技术,2016,39(S2):288-293.[65]李丹,李俊华,蒙佩佩,等.有机肥对镉污染土壤修复效应的影响[J].新疆农垦科技,2015,38(6):58-59.[66]杨洋,黎红亮,陈志鹏,等.郴州尾矿区不同油菜品种对重金属吸收积累特性的比较[J].农业资源与环境学报,2014,32(4):370-376.[67]王海慧,郇恒福,罗瑛,等.土壤重金属污染及植物修复技术[J].中国农学通报,2009(11):210-214.[68]TERRY N,CARLSON C,RAAB T K,et al.Rates of selenium volatilization among crop species[J].J Environ Qual,1992,21(3):341-344.[69]OUYANG Y.Phytoremediation:Modeling plant uptake and contaminant transport in the soil-plant-atmoshphere continuum[J].Journal of Hydrology,2002,266(1):66-82.[70]仲灿,葛晓敏,倪云,等.植物对土壤Cd、Pb污染的修复与抗性机理研究进展[J].世界林业研究,2017,30(1):37-43.[71]RAAB A,SCHAT H,MEHARG A A,et al.Uptake,translocation and transformation of arsenate and arsenite in sunflower(Helianthus annuus):Formation of arsenicphytochelatin complexes during exposure to high arsenic concentrations[J].New Phytologist,2005,168(3):551-558.[72]AHMED J K,SALIH H A M,HADI A G.Anthocyanins in red beet juice act as scavengers for heavy metals ions such as lead and cadmium[J].Journal of Applicable and Chemistry,2013,2(4):797-804.[73]LEO G A,OLIVEIRA J A D,FELIPE R T A,et al.Anthocyanins,thiols,and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic[J].Journal of Plant Interactions,2013,9(1):143-151.[74]URAGUCHI S,SONE Y,OHTA Y,et al.Identification of C-terminal regions in Arabidopsis thaliana phytochelatin synthase 1 specifically involved in activation by arsenite[J].Plant and Cell Physiology,2018,59(3):500-509.[75]刘巧,张敏硕,王小敏,等.镉、铅复合污染条件下印度芥菜的根际特征研究[J].江苏农业科学,2020,48(1):272-277.[76]肖寒,欧阳志云,赵景柱,等.海南岛生态系统土壤保持空间分布特征及生态经济价值评估[J].生态学报,2000,20(4):552-558.[77]XIE M J,YAN C L,YE J,et al.Impact of phenanthrene on organic acids secretion and accumulation by Perennial ryegrass,Lolium perenne L.root[J].Bull Environ Contam Toxicol,2009,83(1):75-80.[78]TRINDADE P V,SOBRAL L G,RIZZO A C,et al.Bioremediation of a weathered and a recently oil contaminated soils from brazil:A comparison study[J].Chemosphere,2005,58:515-522.[79]高彦征,凌婉婷,朱利中,等.黑麦草对多环芳烃污染土壤的修复作用及机制[J].农业环境科学学报,2005,24(3):498-502.[80]宋雪英,宋玉芳,孙铁珩,等.石油污染土壤植物修复后对陆生高等植物的生态毒性[J].环境科学,2006,27(9):1866-1871.[81]戴春雷.大庆油污土壤复合植物系统修复技术研究[D].大庆:大庆石油学院,2010.[82]李先梅,肖易,吴芸紫,等.华北油田石油污染土壤的修复植物筛选[J].环境科学与技术,2015,38(6):14-19.[83]井明博,刘建新,张希彪,等.适生植物白三叶草(Trifolium repens)对陇东地区不同浓度油污土壤场地生态修复的响应[J].陇东学院学报,2019,30(5):77-83.[84]ARIAS-TRINIDAD A,RIVERA-CRUZ M C,ROLDN-GARRIGS A,et al.Use of Leersia hexandra (Poaceae) for soil phytoremediation in soils contaminated with fresh and weathered oil[J].Revista De Biologia Tropical,2017,65(1):21-30.[85]王金成,井明博,周立辉,等.非洲菊对陇东地区油污土壤的生态修复[J].草业科学,2020,37(2):273-286.[86]张连娟,沙本才,龙光强,等.药用植物与微生物互利共生关系的研究进展[J].世界科学技术-中医药现代化,2017,19(10):1750-1757.[87]丑敏霞,魏新元.豆科植物共生结瘤的分子基础和调控研究进展.植物生态学报,2010,34(7):876-888.[88]DNARI J,DEBELL F,PROM J C.Rhizobium lipo-chitooligosaccharide nodulation factors:Signaling molecules mediating recognition and morphogenesis[J].Annu Rev Biochem,1996,65:503-535.[89]CRDENAS L,HOLDAWAY-CLARKE T L,SANCHEZ F,et al.Ion changes inlegume root hairs responding to Nod factors[J].Plant Physiol,2000,123(2):443-452.[90]SHAW S L,LONG S R.Nod factor elicits two separable calcium responsesin Medicago truncatula root hair cells[J].Plant Physiol,2003,131(3):976-984.[91]TIMMERS A C J,AURIAC M C,TRUCHET G.Refined analysis of earlysymbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements[J].Development,1999,126(16):3617-3628.[92]van BRUSSEL A A,BAKHUIZEN R,van SPRONSE P C,et al.Induction of preinfection thread structures in the leguminous host plant by mitogenic Lipo-oligosaccharides of rhizobium[J].Science,1992,257(5066):70-72.[93]ASARI S,TARKOWSK D,ROL〖AKCˇ〗K J,et al.Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens,UCMB5113 using Arabidopsis thaliana as host plant[J].Planta,2016,245(1):15-30.[94]DUDHANE M,BORDE M,JITE P K.Effect of aluminium toxicity on growth responses and antioxidant activities in Gmelina arborea Roxb inoculated with AM fungi[J].International Journal of Phytoremediat,2012,14(7):643-655.[95]SLATNI T,DELL′ORTO M,BEN S I,et al.Immunolocalization of H+-ATPase and IRT1 enzymes in N2-fixing common bean nodules subjected to iron deficiency[J].Journal of Plant Physiology,2012,169(3):242-248.
相似文献/References:
[1]张乐森,王振华,孟凡山,等.滨州保护地土壤退化原因分析与防治措施探讨[J].北方园艺,2013,37(20):146.
ZHANG Le-sen,WANG Zhen-hua,MENG Fan-shan,et al.Cause Analysis and Preventive Measures of Degraded Soil in Binzhou Reserve[J].Northern Horticulture,2013,37(12):146.
备注/Memo
第一作者简介:王正维(1996-),男,硕士研究生,研究方向为药用植物资源化学与开发利用。E-mail:2374742704@qq.com.责任作者:海梅荣(1973-),女,博士,教授,现主要从事作物生理生态等研究工作。E-mail:2250029499@qq.com.收稿日期:2021-11-25