ZHANG Wei,XIAO Mengting,HUANG Min,et al.Effects of UV-C Irradiation on Antifungal Mechanism of Botrytis cinerea[J].Northern Horticulture,2020,44(18):7-13.[doi:10.11937/bfyy.20200121]
短波紫外线辐照对灰葡萄孢抑菌机理的影响
- Title:
- Effects of UV-C Irradiation on Antifungal Mechanism of Botrytis cinerea
- 文献标志码:
- A
- 摘要:
- 以灰葡萄孢为试材,采用短波紫外线对其进行辐照处理,研究了照射时间为10、20、30、40、50 min的短波紫外线对灰葡萄孢的抑制作用,以期为葡萄灰霉病的防治提供参考依据。结果表明:短波紫外线的照射处理可以显著地抑制灰葡萄孢的生长,其抑制率和照射时间呈正相关,在照射时间为40 min的处理中,灰葡萄孢的生长抑制率达到851%;与对照组相比,紫外照射30 min和40 min处理组在作用2 h以后,灰葡萄孢的相对电导率明显升高;此外,菌丝体自身总糖和可溶性蛋白质含量随着紫外照射时间的延长而逐渐降低,并且紫外线照射处理还会降低灰葡萄孢机体内参与物质能量代谢的相关酶活性,进而干扰其正常萌发与生长,显著降低果实的病斑直径,为葡萄采后无公害防治及保鲜贮藏提供参考指导。
- Abstract:
- Botrytis cinerea was used as the test fungus to investigate the inhibitory effect of short-wave ultraviolet radiation on it and control effect of irradiation at different times (10,20,30,40,50 minutes).The results showed that the growth of Botrytis cinerea was significantly inhibited by short-wave ultraviolet irradiation,and the inhibition rate was positively correlated with the irradiation time.The growth inhibition rate of Botrytis cinerea reached 851% when treatment time was 40 minutes.Compared with the control group,the relative conductivity of 30 and 40 minutes groups increased significantly after ultraviolet irradiation for 2 hours.The total sugar and soluble protein content of mycelium decreased gradually with the prolonged ultraviolet irradiation time,and ultraviolet irradiation could also reduce the activities of related enzymes involved in substance and energy metabolism in Botrytis cinerea organism,thereby interfering with its normal germination and growth,significantly reducing the diameter of fruit lesions,providing a certain theory and technology guidance for pollution-free control and fresh-keeping storage of grapes after harvest.
参考文献/References:
[1]杨勇,杨俊祥,宫霞,等.葡萄及葡萄属植物中的天然活性物质研究与利用现状[J].酿酒科技,2011(6):75-79.[2]柯杨,马瑜,朱海云,等.葡萄灰霉病无公害防治研究进展[J].生物学杂志,2017,34(3):87-91.[3]WILLIAMSON B,TUDZYNSKI B,TUDZYNSKI P,et al.Botrytis cinerea:The cause of grey mould disease[J].Molecular Plant Pathology,2007,8(5):561-580.[4]LACHHAB N,SANZANI S M,BAHOUAOUI M A,et al.Effect of some protein hydrolysates against gray mould of table and wine grapes[J].European Journal of Plant Pathology,2016,144(4):821-830.[5]张鹏.葡萄灰霉病发生规律及防治技术研究[D].北京:中国农业科学院,2011.[6]WILSON C L,GHAOUTH A E,UPCHURCH B,et al.Using an on-line UV-C apparatus to treat harvested fruit for controlling postharvest decay[J].Horttechnology,1997,7(3):278-282.[7]ZHU M,RIEDERER M,HILDEBRANDT U.UV-C irradiation compromises conidial germination,formation of appressoria,and induces transcription of three putative photolyase genes in the barley powdery mildew fungus,Blumeria graminis f.sp.hordei[J].Fungal Biology,2019,123(3):218-230.[8]陈曦,邓吉良,陈日东,等.UV-C处理对甘薯贮藏品质的影响[J].热带作物学报,2019,40(2):373-379.[9]蓬桂华,张爱民,邢丹,等.UV-C照射剂量对辣椒果实贮藏效果的影响[J].贵州农业科学,2015,43(1):149-153.[10]SARI L K,SETHA S,NARADISORN M.Effect of UV-C irradiation on postharvest quality of ‘Phulae’ pineapple[J].Scientia Horticulturae,2016,213:314-320.[11]曹建康,姜微波,赵玉梅,等.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007.[12]李自芹,王坚,王俐伟,江英.保鲜剂及紫外线对库尔勒香梨黑头病菌抑菌效果的研究[J].食品工业,2012,33(7):106-108.[13]尹明安,李玉娟,任小林.低剂量短波紫外线照射提高采后苹果抗病性[J].农业工程学报,2015,31(2):324-332.[14]杨苏声,周俊初.微生物生物学[M].北京:科学出版社,2004.[15]STODDART A,HERTZ M I,DAVID M,et al.Determination of antibacterial mode of action of Allium sativumessential oil against foodborne pathogens using membrane permeability and surface characteristic parameters[J].Journal of Food Safety,2013,33(2):197-208.[16]HE C,ZHANG Z,LI B,et al.Effect of natamycin on Botrytis cinerea and Penicillium expansum-Postharvest pathogens of grape berries and jujube fruit[J].Postharvest Biology and Technology,2019,151:134-141.[17]白振龙.苹果酸脱氢酶调控大豆苹果酸合成及根瘤生长的机制[D].广州:华南农业大学,2018.[18]周晓婉,周会玲,石亚莉,等.1-MCP诱导苹果采后灰霉病抗性的作用机理[J].现代食品科技,2016(10):211-219.[19]肖景惠,张庆芳,于爽,等.微生物中苹果酸脱氢酶研究现状及展望[J].中国酿造,2018,37(8):14-18.
相似文献/References:
[1]董平,赵培宝,任爱芝.蝴蝶兰灰霉病菌的分离鉴定[J].北方园艺,2014,38(04):109.
DONG Ping,ZHAO Pei-bao,REN Ai-zhi.Isolation and Identification of Botrytis cinerea?in Phalaenopsis[J].Northern Horticulture,2014,38(18):109.
[2]朱丽梅,崔群香,曹嘉懿,等.不同茄子品种对灰霉病的室内抗病性鉴定[J].北方园艺,2012,36(22):135.
ZHU Li-mei,CUI Qun-xiang,CAO Jia-yi,et al.The Identification of Disease Resistance of Different Eggplant Varieties to Botrytis cinerea[J].Northern Horticulture,2012,36(18):135.
[3]刘然然,阎瑞香,王欣,等.短波紫外线处理对“玫瑰香”葡萄采后褐变及相关酶活性的影响[J].北方园艺,2012,36(10):12.
LIU Ran-ran,YAN Rui-xiang,WANG Xin,et al.Influence of UV-C Treatment on Postharvest Browning and Enzyme Activity of ‘Meigui’ Grape[J].Northern Horticulture,2012,36(18):12.
[4]李娜,刘锦霞,杜文静,等.生防枯草芽孢杆菌高效抗逆菌株选育及其对一品红灰霉病的防控效果[J].北方园艺,2014,38(23):101.
LI Na,LIU Jin-xia,DU Wen-jing,et al.Mutagenesis of Bacillus subtilis with High Toxicity and Strong Resilience,and Its Effect of Control of Botrytis cinerea of ‘Poinsettia’[J].Northern Horticulture,2014,38(18):101.
[5]陈艳光,尹淑丽,刘洪伟,等.枯草芽孢杆菌BSD-2诱导黄瓜抗灰霉病的作用研究[J].北方园艺,2016,40(12):119.[doi:10.11937/bfyy.201612029]
(Institute of Biology,Hebei Academy of Sciences,Shijiazhuang,et al.Induced Resistance of Cucumber Against Botrytis cinerea by Bacillus subtilis BSD-2 CHEN Yanguang,YIN Shuli,LIU Hongwei,ZHANG Genwei,CHENG Huicai,ZHANG Liping[J].Northern Horticulture,2016,40(18):119.[doi:10.11937/bfyy.201612029]
[6]李宝庆,鹿秀云,马瑜,等.不同生防制剂对黄瓜两种主要气传病害的防治效果[J].北方园艺,2017,41(21):75.[doi:10.11937/bfyy.20171250]
LI Baoqing,LU Xiuyun,MA Yu,et al.Control Effects of Different Biocontrol Preparations on Two Cucumber Airborne Diseases[J].Northern Horticulture,2017,41(18):75.[doi:10.11937/bfyy.20171250]
[7]崔蕴刚,张华敏,李延龙,等.韭菜灰霉病病原鉴定及其生物学特性[J].北方园艺,2020,44(04):14.[doi:10.11937/bfyy.20191800]
CUI Yungang,ZHANG Huamin,LI Yanlong,et al.Identification and Biological Characterization of the Pathogen of Allium tuberosum Grey Mold[J].Northern Horticulture,2020,44(18):14.[doi:10.11937/bfyy.20191800]
[8]赵玳琳,何海永,谭清群,等.种植密度对万寿菊主要病害、农艺性状的影响及田间药剂筛选[J].北方园艺,2021,(21):78.[doi:10.11937/bfyy.20210987]
ZHAO Dailin,HE Haiyong,TAN Qingqun,et al.Effects of Planting Density on Main Diseases and Agronomic Characters and Study on Field Pesticide Screening of Marigold[J].Northern Horticulture,2021,(18):78.[doi:10.11937/bfyy.20210987]
[9]项倩,吴磊,徐若涵,等.不同温度下染病番茄叶片SPAD和叶绿素含量的相关性[J].北方园艺,2022,(18):8.[doi:10.11937/bfyy.20220644]
XIANG Qian,WU Lei,XU Ruohan,et al.Correlation Between SPAD and Chlorophyll Content in Infected Tomato Leaves at Different Temperatures[J].Northern Horticulture,2022,(18):8.[doi:10.11937/bfyy.20220644]
[10]王晓杰,侯文川,杨林林,等.箭叶淫羊藿灰霉病的病原菌鉴定及药剂筛选[J].北方园艺,2024,(4):89.[doi:10.11937/bfyy.20231968]
WANG Xiaojie,HOU Wenchuan,YANG Linlin,et al.Identification of Pathogen and Screening of Controlling Agents for Gray Mold Disease of Epimedium sagittatum (Sieb.et Zucc.) Maxim.[J].Northern Horticulture,2024,(18):89.[doi:10.11937/bfyy.20231968]
备注/Memo
第一作者简介:张玮(1980-),女,硕士,讲师,现主要从事微生物的教学与科研等工作。E-mail:416049402@qq.com.责任作者:赵博(1979-),男,博士,讲师,现主要从事园艺产品采后生理的教学与科研等工作。E-mail:bozhao@swust.edu.cn.基金项目:四川省科技计划应用基础资助项目(2018JY0531);辐照保藏四川省重点实验室开放基金资助项目(FZBC2017002)。收稿日期:2020-01-08