LIU Jun,WANG Xuewei.A Tomato Leaf Disease Detection Algorithm Based on CNN Multi-convolution Feature and HOG[J].Northern Horticulture,2020,44(04):147-152.[doi:10.11937/bfyy.20193405]
融合CNN多卷积特征与HOG的番茄叶部病害检测算法
- Title:
- A Tomato Leaf Disease Detection Algorithm Based on CNN Multi-convolution Feature and HOG
- Keywords:
- tomato leaf disease detection; convolutional neural network; multiple convolution features; HOG
- 文献标志码:
- A
- 摘要:
- 传统的番茄叶部病害检测依赖于耗时费力的人工特征设计,必须针对病害的不同分类精心设计相关特征。番茄叶部病害症状复杂,人工设计特征较难。卷积神经网络(convolutional neural network,CNN)可以自动挖掘出隐藏在病害图像内部的抽象特征,在图像识别领域性能优越。该研究提出采用CNN与传统的HOG+SVM算法相结合的方法,抽取番茄叶部病害的浅层特征,将其输入到HOG生成HOG特征并合并,最后输入SVM分类器得到病害检测结果。该研究方法能够改进番茄叶部病害的检测精度。
- Abstract:
- Traditional tomato leaf disease detection relies on time-consuming and laborious artificial feature design and must be carefully designed for different types of tomato diseases.Symptoms of tomato leaf diseases are complex and adopting the methods of artificial design features is difficult.Convolutional Neural Network (CNN) can automatically discover the abstract features hidden in the diseased images,and its performance is superior in the field of image recognition.In this paper,the method combining CNN with traditional HOG+SVM algorithm was proposed to extract the shallow features of tomato leaf diseases,input them into HOG to generate HOG feature and merge them,and finally input them into SVM classifier to obtain disease detection results.Experiments showed that this method could improve the precision of tomato leaf disease detection.
参考文献/References:
[1]HLAING C S,ZAW S M M.Model-based statistical features for mobile phone image of tomato plant disease classification[C]//International Conference on Parallel & Distributed Computing.IEEE,2018.[2]MARTINELLI F,SCALENGHE R,DAVINO S,et al.Advanced methods of plant disease detection.A review[J].Agronomy for Sustainable Development,2015,35(1):1-25.[3]ADHI W S,HANSOO L,KYEONG K E,et al.Convolutional shallow features for performance improvement of histogram of oriented gradients in visual object tracking[J].Mathematical Problems in Engineering,2017(7):1-9.[4]YUNX B,SHUH Z,ZHI F,et al.Automatic multiple zebrafish tracking based on improved hog features[J].Scientific Reports,2018,8(1):10884-10896.[5]JIN K H,MCCANN M T,FROUSTEY E,et al.Deep convolutional neural network for inverse problems in imaging[J].IEEE Transactions on Image Processing,2017,26(9):4509-4522.[6]YIN X,LIU X.Multi-task convolutional neural network for pose-invariant face recognition[J].IEEE Transactions on Image Processing,2017,27(2):964-975.[7]WANG Z,HU M,ZHAI G.Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data[J].Sensors,2018,18(4):1126-1139.[8]KEERTHI S S,SHEVADE S K, BHATTACHARYYA C,et al.Improvements to platt′s smo algorithm for svm classifier design[J].Neural Compute.2001,13:637-649.[9]RAY W D.Applied linear statistical models (3rd edition)[J].Journal of the Operational Research Society,1991,42(9):815.[10]LIAW A,WIENER M.Classification and regression by random forest[J].R News,2002,2/3:18-22.[11]BREIMAN L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.[12]GARDNER M W,DORLING S R.Artificial neural networks (the multilayer perceptron):A review of applications in the at mospheric sciences[J].Atmos.Environ.1998,32,2627-2636.[13]曾伟辉.面向农作物叶片病害鲁棒性识别的深度卷积神经网络研究[D].合肥:中国科学技术大学,2018.[14]王献锋,张传雷,张善文,等.基于自适应判别深度置信网络的棉花病虫害预测[J].农业工程学报,2018,34(14):157-164.[15]刘媛.基于深度学习的葡萄叶片病害识别方法研究[D].兰州:甘肃农业大学,2018.[16]龙满生,欧阳春娟,刘欢,等.基于卷积神经网络与迁移学习的油茶病害图像识别[J].农业工程学报,2018,34(18):194-201.
相似文献/References:
[1]余游江,喻彩丽,尚远航,等.基于Stacking模型的红枣品种分类识别[J].北方园艺,2022,(08):139.[doi:10.11937/bfyy.20214005]
YU Youjiang,YU Caili,SHANG Yuanhang,et al.Classification and Recognition of Jujube Varieties Based on Stacking Model Fusion[J].Northern Horticulture,2022,(04):139.[doi:10.11937/bfyy.20214005]
[2]段军明,杨祥,董明刚.基于模型压缩对番茄病害识别的应用研究[J].北方园艺,2023,(10):138.[doi:10.11937/bfyy.20222864]
DUAN Junming,YANG Xiang,DONG Minggang.Research on the Application of Tomato Disease Identification Based on Model Compression[J].Northern Horticulture,2023,(04):138.[doi:10.11937/bfyy.20222864]
备注/Memo
第一作者简介:刘君(1986-),女,硕士,讲师,研究方向为农业物联网信息化。E-mail:liu_jun860116@wfust.edu.cn.基金项目:山东省高等学校科研创新平台山东省高校设施园艺实验室资助项目(2019YY003,2018YY044,2018YY016,2018YY043);寿光市应用技术研究与开发计划资助项目(2018JH12);2019年度山东省民办高校基础能力建设工程资助项目;教育部科技发展中心创新基金资助项目(2018A02013);2019年度教育部产学合作协同育人资助项目;潍坊市科技发展计划资助项目(2019GX081,2019GX082);2018年度校级课题资助项目(2018RC002)。收稿日期:2019-11-28