[1]刘君,王学伟.融合CNN多卷积特征与HOG的番茄叶部病害检测算法[J].北方园艺,2020,44(04):147-152.[doi:10.11937/bfyy.20193405]
 LIU Jun,WANG Xuewei.A Tomato Leaf Disease Detection Algorithm Based on CNN Multi-convolution Feature and HOG[J].Northern Horticulture,2020,44(04):147-152.[doi:10.11937/bfyy.20193405]
点击复制

融合CNN多卷积特征与HOG的番茄叶部病害检测算法

参考文献/References:

[1]HLAING C S,ZAW S M M.Model-based statistical features for mobile phone image of tomato plant disease classification[C]//International Conference on Parallel & Distributed Computing.IEEE,2018.[2]MARTINELLI F,SCALENGHE R,DAVINO S,et al.Advanced methods of plant disease detection.A review[J].Agronomy for Sustainable Development,2015,35(1):1-25.[3]ADHI W S,HANSOO L,KYEONG K E,et al.Convolutional shallow features for performance improvement of histogram of oriented gradients in visual object tracking[J].Mathematical Problems in Engineering,2017(7):1-9.[4]YUNX B,SHUH Z,ZHI F,et al.Automatic multiple zebrafish tracking based on improved hog features[J].Scientific Reports,2018,8(1):10884-10896.[5]JIN K H,MCCANN M T,FROUSTEY E,et al.Deep convolutional neural network for inverse problems in imaging[J].IEEE Transactions on Image Processing,2017,26(9):4509-4522.[6]YIN X,LIU X.Multi-task convolutional neural network for pose-invariant face recognition[J].IEEE Transactions on Image Processing,2017,27(2):964-975.[7]WANG Z,HU M,ZHAI G.Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data[J].Sensors,2018,18(4):1126-1139.[8]KEERTHI S S,SHEVADE S K, BHATTACHARYYA C,et al.Improvements to platt′s smo algorithm for svm classifier design[J].Neural Compute.2001,13:637-649.[9]RAY W D.Applied linear statistical models (3rd edition)[J].Journal of the Operational Research Society,1991,42(9):815.[10]LIAW A,WIENER M.Classification and regression by random forest[J].R News,2002,2/3:18-22.[11]BREIMAN L.Bagging predictors[J].Machine Learning,1996,24(2):123-140.[12]GARDNER M W,DORLING S R.Artificial neural networks (the multilayer perceptron):A review of applications in the at mospheric sciences[J].Atmos.Environ.1998,32,2627-2636.[13]曾伟辉.面向农作物叶片病害鲁棒性识别的深度卷积神经网络研究[D].合肥:中国科学技术大学,2018.[14]王献锋,张传雷,张善文,等.基于自适应判别深度置信网络的棉花病虫害预测[J].农业工程学报,2018,34(14):157-164.[15]刘媛.基于深度学习的葡萄叶片病害识别方法研究[D].兰州:甘肃农业大学,2018.[16]龙满生,欧阳春娟,刘欢,等.基于卷积神经网络与迁移学习的油茶病害图像识别[J].农业工程学报,2018,34(18):194-201.

相似文献/References:

[1]余游江,喻彩丽,尚远航,等.基于Stacking模型的红枣品种分类识别[J].北方园艺,2022,(08):139.[doi:10.11937/bfyy.20214005]
 YU Youjiang,YU Caili,SHANG Yuanhang,et al.Classification and Recognition of Jujube Varieties Based on Stacking Model Fusion[J].Northern Horticulture,2022,(04):139.[doi:10.11937/bfyy.20214005]
[2]段军明,杨祥,董明刚.基于模型压缩对番茄病害识别的应用研究[J].北方园艺,2023,(10):138.[doi:10.11937/bfyy.20222864]
 DUAN Junming,YANG Xiang,DONG Minggang.Research on the Application of Tomato Disease Identification Based on Model Compression[J].Northern Horticulture,2023,(04):138.[doi:10.11937/bfyy.20222864]

备注/Memo

第一作者简介:刘君(1986-),女,硕士,讲师,研究方向为农业物联网信息化。E-mail:liu_jun860116@wfust.edu.cn.基金项目:山东省高等学校科研创新平台山东省高校设施园艺实验室资助项目(2019YY003,2018YY044,2018YY016,2018YY043);寿光市应用技术研究与开发计划资助项目(2018JH12);2019年度山东省民办高校基础能力建设工程资助项目;教育部科技发展中心创新基金资助项目(2018A02013);2019年度教育部产学合作协同育人资助项目;潍坊市科技发展计划资助项目(2019GX081,2019GX082);2018年度校级课题资助项目(2018RC002)。收稿日期:2019-11-28

更新日期/Last Update: 2020-04-05