ZHOU Xiaofu,CHEN Silin,WU Hui,et al.Bioinformatics Analysis and Prediction of Rubisco Large Subunit(RbcL) in Sect. Ponticum G.Don[J].Northern Horticulture,2016,40(23):102-108.[doi:10.11937/bfyy.201623024]
常绿杜鹃组植物Rubisco大亚基(RbcL)的生物信息学预测及分析
- Title:
- Bioinformatics Analysis and Prediction of Rubisco Large Subunit(RbcL) in Sect. Ponticum G.Don
- 关键词:
- 常绿杜鹃组; Rubisco; Rubisco大亚基; 生物信息学
- Keywords:
- Sect. Ponticum G.Don; Rubisco; RbcL; bioinformatics
- 文献标志码:
- A
- 摘要:
- 常绿杜鹃组(Sect.Ponticum G.Don)属杜鹃属(Rhododendron)常绿杜鹃亚属(Subgen. Hymenanthes (Blume) K.Koch),该组植物多为常绿大灌木或乔木,且具有重要的观赏和药用价值。核酮糖-1,5-二磷酸羧化酶/加氧酶(Ribulose-1,5-bisphosphate carboxylase/oxygenase,Rubisco)是卡尔文循环中一种重要的限速酶,参与植物的光合作用和光呼吸过程,由于Rubisco的催化位点主要位于Rubisco大亚基(RbcL),因此对于RbcL结构及性质的研究显得尤为重要。现对常绿杜鹃组RbcL进行了统计,对所获得RbcL条目的基本理化性质进行了分析,同时还选取了4段具有代表性的RbcL片段进行了疏水性分析,并利用生物信息学对其二级结构、三级结构及结构域进行了预测。此外,还对常绿杜鹃组RbcL进行了系统进化分析,结果表明:常绿杜鹃组植物中的Rubisco催化位点和RbcL虽然具有高度的保守性,但其在进化上仍然存在差异。这为进一步深入探究常绿杜鹃组植物光合作用机理和RbcL的催化机制奠定基础。
- Abstract:
- Sect. Ponticum G.Don belongs to the representative of the family Rhododendron (Sect.Ponticum G.Don).Plants of the sect are evergreen shrubs or arbors with important ornamental and medicinal value.Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the rate-limiting enzyme of Calvin cycle and also has involved in photosynthesis and photorespiration of plants.The catalytic sites of Rubisco mainly located in the Rubisco large subunit (RbcL),so it has a great significance to study the structure and character of RbcL.The RbcL of Sect. Ponticum G.Don and the basic physical and chemical characters of these obtained RbcL were investigated and analyzed in the present study.Four representative RbcL fragments were selected to analyze the hydrophobicity.Structures were predicted by bioinformatics and the phylogenetic relationship of the RbcL of Sect.Ponticum G.Don was also been analyzed.The results showed that the catalytic sites of Rubisco and the RbcL were highly conservative in Sect.Ponticum G.Don., but they still had differences in evolution. This study may lay a solid foundation for further research into the photosynthesis mechanism of Sect.Ponticum G.Don as well as the catalytic mechanism of RbcL.
参考文献/References:
[1]中国科学院中国植物志编辑委员会.中国植物志:57卷[M].北京:科学出版社,1999. [2]LI L A,TABITA F R.Transcription control of ribulose bisphosphate carboxylase/oxygenase activase and adjacent genes in Anabaena species[J].Journal of Bacteriology,1994,176(21):6697-6706. [3]ELLIS R J.Most abundant protein in the world[J].Trends in Biochemical Sciences,1979,4(11):241-244. [4]RAINES C A.Transgenic approaches to manipulate the environmental responses of the C 3 carbon fixation cycle[J].Plant Cell and Environment,2006,29(3):331-339. [5]FELLER U,FISCHER A.Nitrogen metabolism in senescing leaves[J].Critical Reviews in Plant Sciences,1994,13(3):241. [6]ZHU X G,PORTIS A R,LONG S P.Would transformation of C-3 crop plants with foreign Rubisco increase productivity?A computational analysis extrapolating from kinetic properties to canopy photosynthesis[J].Plant Cell Environ,2004,27(2):155-165. [7]ZHU X G,de STURLER E,LONG S P.Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate:a numerical simulation using an evolutionary algorithm[J].Plant Physiol,2007,145(2):513-526. [8]PARRY M A J,MADGWICK P J,CARVALHO J F C,et al.Prospects for increasing photosynthesis by overcoming the limitations of Rubisco[J].J Agric Sci,2007,145(1):31-43. [9]TABITA F R.Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase:A different perspective[J].Photosynthesis Research,1999,60(1):1-28. [10]WATSON G M,YU J P,TABITA F R.Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic Archaea[J].Journal of Bacteriology,1999,181(5):1569-1575. [11]WILSON R H,ALONSO H,WHITNEY S M.Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth[J].Scientific Reports,2016(6):22284. [12]HANSON T E,TABITA F R.A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress[J].Proc Natl Acad Sci U S A,2001,98(8):4397-4402. [13]TABITA F R,HANSON T E,LI H,et al.Function,structure,and evolution of the RubisCO-like proteins and their RubisCO homologs[J].Microbiol Mol Biol Rev,2007,71(4):576-599. [14]DELGADO E,MEDRANO H,KEYS A J,et al.Species variation in Rubisco specificity factor[J].Journal of Experimental Botany,1995,46(11):1775-1777. [15]GALMS J,FLEXAS J,KEYS A J,et al.Rubisco specificity factor tends to be larger in plant species from drier habitats and with persistent leaves[J].Plant,Cell and Environment,2005,28(5):571-579. [16]KAPRALOV M V,FILATOV D A.Widespread positive selection in the photosynthetic Rubisco enzyme[J].BMC Evolutionary Biology,2007,7(3):73. [17]ANDRALOJC P J,BENCZE S,MADGWICK P J,et al.Photosynthesis and growth in diverse willow genotypes[J].Food and Energy Security,2014,3(2):69-85. [18]WHITNEY S M,HOUTZ R L,HERNAN A.Advancing our understanding and capacity to engneer nature′s CO2-sequestering enzyme,Rubisco[J].Plant Physios,2011,155(1):27-35. [19]PRINS A,ORR D J,ANDRALOJC P J,et al.Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis[J].Journal of Experimental Botany,2016,67(6):1827-1838.
备注/Memo
第一作者简介:周晓馥(1964-),女,博士,教授,博士生导师,研究方向为植物基因工程。E-mail:zhouxiaofu@jlnu.edu.cn. 责任作者:徐洪伟(1964-),男,博士,教授,研究方向为植物基因工程。E-mail:jygc_lab@126.com. 基金项目:国家自然科学基金资助项目(31070224)。